ADC1413D065/080/105/125

Dual 14 bits ADC; 65, 80, 105 or 125 Msps; serial JESD204A interface
Rev. 02 - 4 June 2009
Objective data sheet

1. General description

The ADC1413D is a dual channel 14-bit Analog-to-Digital Converter (ADC) optimized for high dynamic performances and low power at sample rates up to 125 Msps . Pipelined architecture and output error correction ensure the ADC1413D is accurate enough to guarantee zero missing codes over the entire operating range. Supplied from a 3.3 V source for analog and a 1.8 V source for the output driver, it has two serial outputs, because of the two lanes of differential outputs, which are compliant with the JESD204A standard. An integrated SPI (Serial Peripheral Interface) allows the user to easily configure the ADC. A set of IC configurations is also available via the binary level control pins taken, which are used at power-up. The device also includes a programmable gain amplifier with flexible input voltage range.

Excellent dynamic performance is maintained from the baseband to input frequencies of 170 MHz or more, making the ADC1413D ideal for use in communications, imaging and medical applications.

2. Features

SNR, 73 dB	- Input bandwidth, 600 MHz
- SFDR, 90 dBc	- Power dissipation, 995 mW at 80 Msps
- Sample rate up to 125 Msps	- SPI interface
- Dual channel 14-bit pipelined ADC core	- Duty cycle stabilizer
- $3.3 \mathrm{~V}, 1.8 \mathrm{~V}$ single supplies	- High IF capability
Flexible input voltage range: $1 \mathrm{~V}(\mathrm{p}-\mathrm{p})$ to $2 \mathrm{~V}(\mathrm{p}-\mathrm{p})$ with 6 dB programmable fine gain	Offset binary, 2's complement, gray code
- 2 configurable serial outputs	- Power-down and Sleep modes
Compliant with JESD204A serial transmission standard	- HVQFN56 package
$\mathrm{INL} \pm 1 \mathrm{LSB} ; \mathrm{DNL} \pm 0.5 \mathrm{LSB}$	

3. Applications

- Wireless and wired broadband communications
\square Spectral analysis \square Portable instrumentation
- Ultrasound equipment ■ Imaging systems

4. Ordering information

Table 1. Ordering information

Type number	Sampling frequency (Msample/s)	Name	Description	Package	
		HVQFN56	plastic thermal enhanced very thin quad flat package; no leads; 56 terminals; body $8 \times 8 \times 0.85 \mathrm{~mm}$	SOT684-7	
ADC1413D125HN/C1	125	HVQFN56	plastic thermal enhanced very thin quad flat package; no leads; 56 terminals; body $8 \times 8 \times 0.85 \mathrm{~mm}$	SOT684-7	
ADC1413D105HN/C1	105	HVQFN56	plastic thermal enhanced very thin quad flat package; no leads; 56 terminals; body $8 \times 8 \times 0.85 \mathrm{~mm}$	SOT684-7	
ADC1413D080HN/C1	80	HVQFN56	plastic thermal enhanced very thin quad flat package; no leads; 56 terminals; body $8 \times 8 \times 0.85 \mathrm{~mm}$		
ADC1413D065HN/C1	65				

5. Block diagram

Fig 1. Block diagram

6. Pinning information

6.1 Pinning

Fig 2. Pinning diagram

6.2 Pin description

Table 2. Pin description

Symbol	Pin	Type[1]	Description
INAP	1	I	channel A complementary analog input
INAM	2	I	channel A analog input
VCMA	3	O	channel A output common voltage
REFAT	4	O	channel A top reference
REFAB	5	O	Channel A bottom reference
AGND	6	G	analog ground
CLKP	7	I	clock input
CLKN	8	I	complementary clock Input
AGND	9	G	analog ground
REFBB	10	O	channel B bottom reference
REFBT	11	O	channel B top reference
VCMB	12	O	channel B output common voltage
INBM	13	I	channel B complementary analog input

Table 2. Pin description ...continued

Symbol	Pin	Type [1]	Description
INBP	14	1	channel B analog input
VDDA	15	P	analog power supply 3.3 V
VDDA	16	P	analog power supply 3.3 V
SCLK/DFS	17	I	SPI clock / data format select
SDIO/DCS	18	I/O	SPI data IO/duty cycle stabilizer
CSB	19	1	chip select bar
AGND	20	G	analog ground
RESET	21	1	JEDEC digital IP reset
SCRAMBLER	22	1	scrambler enable /disable
CFG0	23	I/O	JEDEC link configuration or OTRA
CFG1	24	I/O	JEDEC link configuration or OTRB
CFG2	25	I/O	JEDEC link configuration
CFG3	26	I/O	JEDEC link configuration
VDDD	27	P	digital power supply 1.8 V
DGND	28	G	digital ground
DGND	29	G	digital ground
DGND	30	G	digital ground
VDDD	31	P	digital power supply 1.8 V
CMLPB	32	0	channel B output
CMLNB	33	0	channel B complementary output
VDDD	34	P	digital power supply 1.8 V
DGND	35	G	digital ground
DGND	36	G	digital ground
VDDD	37	P	digital power supply 1.8 V
CMLNA	38	0	channel A complementary output
CMLPA	39	0	channel A output
VDDD	40	P	digital power supply 1.8 V
DGND	41	G	digital ground
DGND	42	G	digital ground
SYNCP	43	I	synchronization from FPGA
SYNCN	44	1	synchronization from FPGA
DGND	45	G	digital ground
VDDD	46	P	digital power supply 1.8 V
SWING_0	47	I	JESD204 serial buffer programmable output swing
SWING_1	48	1	JESD204 serial buffer programmable output swing
PLL_LOCK	49	0	set when internal PLL is locked
VDDA	50	P	analog power supply 3.3 V
AGND	51	G	analog ground
AGND	52	G	analog ground
VDDA	53	P	analog power supply 3.3 V
SENSE	54	1	reference programming pin
VREF	55	I/O	voltage reference input/output
VDDA	56	P	analog power supply 3.3 V

[1] P: power supply; G: ground; I: input; O: output; I/O: input/output.

7. Limiting values

Table 3. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
$\mathrm{V}_{\mathrm{DDA}}$	analog supply voltage		$\underline{[1]} 2.85$	3.6	V
$\mathrm{~V}_{\mathrm{DDD}}$	digital supply voltage		$\underline{[2]}$	1.65	1.95
$\Delta \mathrm{~V}_{\mathrm{CC}}$	supply voltage difference	$\mathrm{V}_{\mathrm{DDA}}-\mathrm{V}_{\mathrm{DDD}}$	$\mathrm{Ctbd>}$	$<$ tbd>	V
$\mathrm{T}_{\text {stg }}$	storage temperature		-55	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{amb}}$	ambient temperature		-40	+85	${ }^{\circ} \mathrm{C}$
T_{j}	junction temperature	-	125	${ }^{\circ} \mathrm{C}$	

[1] The supply voltage $\mathrm{V}_{\text {DDA }}$ may have any value between -0.5 V and +7.0 V provided that the supply voltage differences $\Delta \mathrm{V}_{\mathrm{CC}}$ are respected.
[2] The supply voltage $\mathrm{V}_{\mathrm{DDD}}$ may have any value between -0.5 V and +5.0 V provided that the supply voltage differences $\Delta V_{C C}$ are respected.

8. Thermal characteristics

Table 4. Thermal characteristics

Symbol	Parameter	Conditions	Typ	Unit
$\mathrm{R}_{\mathrm{th}(\mathrm{j}-\mathrm{a})}$	thermal resistance from junction to ambient	[1]	$20.9 \underline{[2]}$	K/W
$\mathrm{R}_{\mathrm{th}(\mathrm{j}-\mathrm{c})}$	thermal resistance from junction to case	$\underline{[1]}$	$<\mathrm{tbd}>$	K / W

[1] In compliance with JEDEC test board, in free air.
[2] Value for 4 layers and 36 vias.

9. Static characteristics

Table 5. Characteristics
Typical values measured at $V_{D D A}=3 \mathrm{~V}, V_{D D D}=1.8 \mathrm{~V}, T_{\text {amb }}=25^{\circ} \mathrm{C}$ and $C_{L}=5 \mathrm{pF}$.
Min. and max. values are across the full temperature range $T_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ at $V_{D D A}=3 \mathrm{~V}, V_{D D D}=1.8 \mathrm{~V}$; $V_{i}(I N A P, I N B P)-V_{i}$ (INAM, INBM) $=-1$ dBFS; internal reference mode; 100Ω differential applied to serial outputs; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
Supplies						
$V_{\text {DDA }}$	analog supply voltage		2.85	3.0	3.4	V
$V_{\text {DDD }}$	digital supply voltage		1.65	1.8	3.6	V
IDDA	analog supply current	$\begin{aligned} & \mathrm{f}_{\mathrm{clk}}=125 \mathrm{Msample} / \mathrm{s} ; \\ & \mathrm{f}_{\mathrm{i}}=70 \mathrm{MHz} \end{aligned}$	-	343	-	mA
$\mathrm{I}_{\text {DDD }}$	digital supply current	$\begin{aligned} & \mathrm{f}_{\mathrm{clk}}=125 \mathrm{Msample} / \mathrm{s} ; \\ & \mathrm{f}_{\mathrm{i}}=70 \mathrm{MHz} \end{aligned}$	-	150	-	mA
$\mathrm{P}_{\text {tot }}$	total power dissipation	$\mathrm{f}_{\text {clk }}=125 \mathrm{Msample} / \mathrm{s}$	-	1270	-	mW
		$\mathrm{f}_{\text {clk }}=105 \mathrm{Msample} / \mathrm{s}$	-	1150	-	mW
		$\mathrm{f}_{\mathrm{clk}}=80 \mathrm{Msample} / \mathrm{s}$	-	995	-	mW
		$\mathrm{f}_{\mathrm{clk}}=65 \mathrm{Msample} / \mathrm{s}$	-	885	-	mW

Table 5. Characteristics ...continued
Typical values measured at $V_{D D A}=3 \mathrm{~V}, V_{D D D}=1.8 \mathrm{~V}, T_{\text {amb }}=25^{\circ} \mathrm{C}$ and $C_{L}=5 \mathrm{pF}$.
Min. and max. values are across the full temperature range $T_{a m b}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ at $V_{D D A}=3 \mathrm{~V}, V_{D D D}=1.8 \mathrm{~V}$; $V_{i}(I N A P, I N B P)-V_{i}(I N A M$, INBM $)=-1$ dBFS; internal reference mode; 100Ω differential applied to serial outputs; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
P	power dissipation	power-down mode	-	30	-	mW
		standby mode	-	200	-	mW

Digital inputs
Clock inputs: pins CLKP and CLKM, AC coupled
LVPECL, LVDS and Sinewave modes compatible

$V_{i(c l k) \text { dif }}$	differential clock input voltage	peak-to-peak	0.2	0.8	<tbd>	V (p-p)

LVCMOS mode

V_{I}	input voltage	$0.3 \mathrm{~V}_{\text {DDA }}$	-	$0.7 \mathrm{~V}_{\text {DDA }}$	V
Logic Inputs:	Power-down: pin CF 0 to 3, pin scrambler, Swing_0,	Swing_1			
V_{IL}	LOW-level input voltage	-	0	-	V
V_{IH}	HIGH-level input voltage	-	$0.66 \mathrm{~V}_{\text {DDD }}$	-	V
I_{IL}	LOW-level input current	-6	-	+6	$\mu \mathrm{~A}$
I_{IH}	HIGH-level input current	-30	-	+30	$\mu \mathrm{~A}$

Serial Peripheral Interface: pin CSB, SDIO, SCLK, pin DFS, pin DCS

V_{IL}	LOW-level input voltage	0	-	$0.3 \mathrm{~V}_{\text {DDA }}$	V
V_{IH}	HIGH-level input voltage	$0.7 \mathrm{~V}_{\text {DDA }}$	-	$\mathrm{V}_{\text {DDA }}$	V
I_{IL}	LOW-level input current	-10	-	+10	$\mu \mathrm{~A}$
I_{IH}	HIGH-level input current	-50	-	+50	$\mu \mathrm{~A}$
C_{I}	Input capacitance	-	4	-	PF

Analog inputs: pins INAP and INAM, pins INBP and INBM

II	Input current	-5	-	+5	$\mu \mathrm{A}$
R_{1}	input resistance	-	15	-	Ω
C_{1}	input capacitance	-	5	-	pF
$\mathrm{V}_{\text {(}} \mathrm{cm}$)	common-mode input voltage	0.9	1.5	2	V
B_{i}	input bandwidth	-	600	-	MHz
$V_{\text {l(dif) }}$	differential input voltage	1	-	2	$V(p-p)$
Voltage controlled regulator output: pin VCMA, VCMB					
$\mathrm{V}_{\text {O(cm) }}$	common-mode output voltage	-	$0.5 \mathrm{~V}_{\text {DDA }}$	-	V
$\mathrm{l}_{\mathrm{O}(\mathrm{cm})}$	common-mode output current	-	<tbd>	-	$\mu \mathrm{A}$

Table 5. Characteristics ...continued
Typical values measured at $V_{D D A}=3 \mathrm{~V}, V_{D D D}=1.8 \mathrm{~V}, T_{\text {amb }}=25^{\circ} \mathrm{C}$ and $C_{L}=5 \mathrm{pF}$.
Min. and max. values are across the full temperature range $T_{a m b}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ at $V_{D D A}=3 \mathrm{~V}, V_{D D D}=1.8 \mathrm{~V}$; $V_{i}(I N A P, I N B P)-V_{i}(I N A M$, INBM $)=-1$ dBFS; internal reference mode; 100Ω differential applied to serial outputs; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
Reference voltage input/output: pin VREF						
V $_{\text {VREF }}$	voltage on pin VREF	output	-	0.5 to 1	-	V
	input	0.5	-	1	V	
Reference mode selection: pin SENSE						
V				pin AGND;	-	V

Data outputs: CMLPA, CMLNA
Output levels, $\mathrm{V}_{\mathrm{DDD}}=1.8 \mathrm{~V}\{$ Swing_2, Swing_1, Swing_0 $=\{0,0,0\}$

$\mathrm{V}_{\text {OL }}$	LOW-level output	DC coupled; output	-	1.5	-	V
		AC coupled	-	1.65	-	V
V_{OH}	HIGH-level output	DC coupled; output	-	1.8	-	V
	voltage	AC coupled	-	1.35	-	V

Output levels, $\mathrm{V}_{\mathrm{DDD}}=1.8 \mathrm{~V}$. \{Swing_2, Swing_1, Swing_0\}=\{0,0,1\}

V OL	LOW-level output voltage	DC coupled; output		1.45		V
		AC coupled	-	1.625		V
V_{OH}	HIGH-level output voltage	DC coupled; output		1.8	-	V
		AC coupled	-	1.275		V

Output levels, $\mathrm{V}_{\text {DDD }}=1.8 \mathrm{~V}$ \{Swing_2, Swing_1, swing_ 0$\}=\{0,1,0\}$

$\mathrm{V}_{\text {OL }}$	LOW-level output voltage	DC coupled; output	-	1.4	-	V
		AC coupled	-	1.6	-	V
V_{OH}	HIGH-level output voltage	DC coupled; output	-	1.8	-	V
		AC coupled	-	1.2	-	V
Output levels, $\mathrm{V}_{\text {DDD }}=1.8 \mathrm{~V}$ \{Swing_2, Swing_1, Swing_0 $=\{0,1,1\}$						
$\mathrm{V}_{\text {OL }}$	LOW-level output voltage	DC coupled; output	-	1.35	-	V
		AC coupled	-	1.575	-	V
V_{OH}	HIGH-level output voltage	DC coupled; output	-	1.8	-	V
		AC coupled	-	1.125	-	V
Output levels, $\mathrm{V}_{\text {DDD }}=1.8 \mathrm{~V}$ \{Swing_2, Swing_1,Swing_0 $=\{1,0,0\}$						
V OL	LOW-level output voltage	DC coupled; output	-	1.3	-	V
		AC coupled	-	1.55	-	V
V_{OH}	HIGH-level output voltage	DC coupled; output	-	1.8	-	V
		AC coupled	-	1.05	-	V
Serial configuration: SYNC_P, SYNC_N						
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	Differential; input	-	0.95	-	V
V_{IH}	High-level input voltage	Differential; input	-	1.47	-	V
Accuracy						
INL	integral non-linearity		-5	± 1	+5	LSB

Table 5. Characteristics ...continued
Typical values measured at $V_{D D A}=3 \mathrm{~V}, V_{D D D}=1.8 \mathrm{~V}, T_{\text {amb }}=25^{\circ} \mathrm{C}$ and $C_{L}=5 \mathrm{pF}$.
Min. and max. values are across the full temperature range $T_{a m b}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ at $V_{D D A}=3 \mathrm{~V}, V_{D D D}=1.8 \mathrm{~V}$; $V_{i}(I N A P, I N B P)-V_{i}(I N A M$, INBM $)=-1$ dBFS; internal reference mode; 100Ω differential applied to serial outputs; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
DNL	differential non-linearity	no missing codes guaranteed	-1	± 0.5	+1	LSB
$\mathrm{E}_{\text {offset }}$	offset error		-	± 2	-	mV
E_{G}	gain error		-	± 0.5	-	\% FS
$\mathrm{M}_{\mathrm{G}(\mathrm{CTC})}$	channel-to-channel gain matching		-	<tbd>	-	\%
Supply						
PSRR	Power Supply Rejection Ratio	100 mV (p-p) on VDDA	-	35	-	dBc

10. Dynamic characteristics

Table 6. Characteristics
Typical values measured at $V_{D D A}=3 \mathrm{~V}, V_{D D D}=1.8 \mathrm{~V}, T_{\text {amb }}=25^{\circ} \mathrm{C}$ and $C_{L}=5 \mathrm{pF}$.
Min. and max. values are across the full temperature range $T_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ at $V_{D D A}=3 \mathrm{~V}, V_{D D D}=1.8 \mathrm{~V}$;
$V_{i}($ INAP, INBP $)-V_{i}$ (INAM, INBM) $=-1$ dBFS; internal reference mode; 100Ω differential applied to serial outputs; unless otherwise specified.

Symbol	Parameter	Conditions	ADC1413D065			ADC1413D080			ADC1413D105			$\begin{aligned} & \text { ADC1413D12 } \\ & 5 \end{aligned}$			Unit
			Min	Typ	Max										
Analog signal processing															
$\alpha_{2 H}$	second harmonic level	$\mathrm{f}_{\mathrm{i}}=3 \mathrm{MHz}$	-	94	-	-	94	-	-	96	-	-	96	-	dBc
		$\mathrm{f}_{\mathrm{i}}=30 \mathrm{MHz}$	-	93	-	-	93	-	-	92	-	-	93	-	dBc
		$\mathrm{f}_{\mathrm{i}}=70 \mathrm{MHz}$	-	90	-	-	91	-	-	91	-	-	91	-	dBc
		$\mathrm{f}_{\mathrm{i}}=170 \mathrm{MHz}$	-	88	-	-	88	-	-	85	-	-	85	-	dBc
$\alpha_{3 H}$	third harmonic level	$\mathrm{f}_{\mathrm{i}}=3 \mathrm{MHz}$	-	92	-	-	93	-	-	91	-	-	90	-	dBc
		$\mathrm{f}_{\mathrm{i}}=30 \mathrm{MHz}$	-	91	-	-	92	-	-	91	-	-	89	-	dBc
		$\mathrm{f}_{\mathrm{i}}=70 \mathrm{MHz}$	-	90	-	-	90	-	-	90	-	-	87	-	dBc
		$\mathrm{f}_{\mathrm{i}}=170 \mathrm{MHz}$	-	88	-	-	87	-	-	88	-	-	87	-	dBc
THD	total harmonic distortion	$\mathrm{f}_{\mathrm{i}}=3 \mathrm{MHz}$	-	88	-	-	88	-	-	87	-	-	87	-	dBc
		$\mathrm{f}_{\mathrm{i}}=30 \mathrm{MHz}$	-	87	-	-	87	-	-	87	-	-	86	-	dBc
		$\mathrm{f}_{\mathrm{i}}=70 \mathrm{MHz}$	-	86	-	-	86	-	-	85	-	-	84	-	dBc
		$\mathrm{f}_{\mathrm{i}}=170 \mathrm{MHz}$	-	83	-	-	83	-	-	82	-	-	82	-	dBc
ENOB	effective number of bits	$\mathrm{f}_{\mathrm{i}}=3 \mathrm{MHz}$	-	11.9	-	-	11.9	-	-	11.8	-	-	11.8	-	Bits
		$\mathrm{f}_{\mathrm{i}}=30 \mathrm{MHz}$	-	11.7	-	-	11.7	-	-	11.7	-	-	11.7	-	Bits
		$\mathrm{f}_{\mathrm{i}}=70 \mathrm{MHz}$	-	11.6	-	-	11.6	-	-	11.6	-	-	11.6	-	Bits
		$\mathrm{f}_{\mathrm{i}}=170 \mathrm{MHz}$	-	11.6	-	-	11.5	-	-	11.5	-		11.5	-	Bits
$\mathrm{N}_{\text {th(RMS })}$	RMS thermal noise			tbd	-		tbd	-	-	tbd	-		tbd	-	tbd

Table 6. Characteristics ...continued
Typical values measured at $V_{D D A}=3 \mathrm{~V}, V_{D D D}=1.8 \mathrm{~V}, T_{\text {amb }}=25^{\circ} \mathrm{C}$ and $C_{L}=5 \mathrm{pF}$.
Min. and max. values are across the full temperature range $T_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ at $V_{D D A}=3 \mathrm{~V}, V_{D D D}=1.8 \mathrm{~V}$;
$V_{i}($ INAP, INBP $)-V_{i}$ (INAM, INBM) $=-1$ dBFS; internal reference mode; 100Ω differential applied to serial outputs; unless otherwise specified.

Symbol	Parameter	Conditions	ADC1413D065			ADC1413D080			ADC1413D105			$\begin{aligned} & \text { ADC1413D12 } \\ & 5 \end{aligned}$			Unit
			Min	Typ	Max										
SNR	signal-to-noise ratio	$\mathrm{f}_{\mathrm{i}}=3 \mathrm{MHz}$	-	73.2	-	-	73.1	-	-	72.9	-	-	72.5	-	dBFS
		$\mathrm{f}_{\mathrm{i}}=30 \mathrm{MHz}$	-	72.4	-	-	72.3	-	-	72.3	-	-	72.2	-	dBFS
		$\mathrm{f}_{\mathrm{i}}=70 \mathrm{MHz}$	-	71.8	-	-	71.8	-	-	71.7	-	-	71.6	-	dBFS
		$\mathrm{f}_{\mathrm{i}}=170 \mathrm{MHz}$	-	71.3	-	-	71.2	-	-	71.1	-	-	71	-	dBFS
SFDR	spurious-free dynamic range	$\mathrm{f}_{\mathrm{i}}=3 \mathrm{MHz}$	-	91	-	-	91	-	-	90	-	-	90	-	dBc
		$\mathrm{f}_{\mathrm{i}}=30 \mathrm{MHz}$	-	90	-	-	90	-	-	90	-	-	89	-	dBc
		$\mathrm{f}_{\mathrm{i}}=70 \mathrm{MHz}$	-	89	-	-	89	-	-	88	-		87	-	dBc
		$\mathrm{f}_{\mathrm{i}}=170 \mathrm{MHz}$	-	86	-	-	86	-	-	85	-		85	-	dBc
IMD	intermodulation distortion	$\mathrm{f}_{\mathrm{i}}=3 \mathrm{MHz}$	-	94	-	-	94	-	-	93	-	-	93	-	dBc
		$\mathrm{f}_{\mathrm{i}}=30 \mathrm{MHz}$	-	93	-	-	93	-	-	93	-	-	92	-	dBc
		$\mathrm{f}_{\mathrm{i}}=70 \mathrm{MHz}$	-	92	-	-	92	-	-	91	-		90	-	dBc
		$\mathrm{f}_{\mathrm{i}}=170 \mathrm{MHz}$	-	89	-	-	89	-	-	88	-		88	-	dBc
$\alpha_{\mathrm{ct} \text { (ch) }}$	crosstalk between channels	$\mathrm{f}_{\mathrm{i}}=70 \mathrm{MHz}$		tbd	-	dB									

11. Clock and digital output timing

Table 7. Characteristics
Typical values measured at $V_{D D A}=3 \mathrm{~V}, V_{D D D}=1.8 \mathrm{~V}, T_{\text {amb }}=25^{\circ} \mathrm{C}$ and $C_{L}=5 \mathrm{pF}$.
Min. and max. values are across the full temperature range $T_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ at $V_{D D A}=3 \mathrm{~V}, V_{D D D}=1.8 \mathrm{~V}$;
V_{l} (INAP, INBP) - V_{l} (INAM, INBM) $=-1$ dBFS; internal reference mode; 100Ω differential applied to serial outputs; unless otherwise specified.

Symbol	Parameter	Conditions	ADC1413D065			ADC1413D080			ADC1413D105			ADC1413D125			Unit
			Min	Typ	Max										
Clock timing input: pins CLKP and CLKM															
$\mathrm{f}_{\mathrm{clk}}$	clock frequency		20	-	65	60	-	80	60	-	105	60	-	125	Msps
$t_{\text {lat(data) }}$	data latency time		17	-	20	17	-	20	17	-	20	17	-	20	clk/cy
$\delta_{\text {clk }}$	clock duty cycle	DCS en	30	50	70	30	50	70	30	50	70	30	50	70	\%
		DCS dis	45	50	55	45	50	55	45	50	55	45	50	55	\%
$t_{\text {d(s) }}$	sampling delay time		-	0.8	-	-	0.8	-	-	0.8	-	-	0.8	-	ns
$\mathrm{t}_{\text {wake }}$	wake-up time		-	tbd	-	-	tbd	-	-	tbd	-		tbd		ns

11.1 Serial output timings

The eye diagram of the serial output is shown in Figure 3 and Figure 4. Test conditions are:

- 3.125 Gbps data rate
- $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
- DC coupling with 2 different receiver common-mode voltages.

005aaa088
Fig 3. Eye diagram at 1 V receiver common mode

Fig 4. Eye diagram at 2 V receiver common mode

12. SPI timing

Table 8. Characteristics
Typical values measured at $V_{D D A}=3 \mathrm{~V}, V_{D D D}=1.8 \mathrm{~V}, T_{\text {amb }}=25^{\circ} \mathrm{C}$ and $C_{L}=5 \mathrm{pF}$.
Min. and max. values are across the full temperature range $T_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ at $V_{D D A}=3 \mathrm{~V}, V_{D D D}=1.8 \mathrm{~V}$;
$V_{i}(I N A P, I N B P)-V_{i}(I N A M$, INBM $)=-1$ dBFS; internal reference mode; 100Ω differential applied to serial outputs; unless otherwise specified.

$\left.\begin{array}{llccc}\hline \text { Symbol } & \text { Parameter } & \text { Conditions } & \text { Min } & \text { Typ }\end{array}\right)$ Max	Unit
Serial Peripheral Interface timings	

Table 8. Characteristics ...continued
Typical values measured at $V_{D D A}=3 \mathrm{~V}, V_{D D D}=1.8 \mathrm{~V}, T_{\text {amb }}=25^{\circ} \mathrm{C}$ and $C_{L}=5 \mathrm{pF}$.
Min. and max. values are across the full temperature range $T_{a m b}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ at $V_{D D A}=3 \mathrm{~V}, V_{D D D}=1.8 \mathrm{~V}$; $V_{i}(I N A P, I N B P)-V_{i}(I N A M$, INBM $)=-1$ dBFS; internal reference mode; 100Ω differential applied to serial outputs; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{t}_{\text {w (SCLKL) }}$	SCLK pulse width LOW		16			ns
$t_{\text {su }}$	set-up time	data to SCLKH	5			ns
		$\begin{aligned} & \text { CSB to } \\ & \text { SCLKH } \end{aligned}$				
t_{n}	hold time	data to SCLKH	2			ns
		$\begin{aligned} & \text { CSB to } \\ & \text { SCLKH } \end{aligned}$	2			ns
$\mathrm{f}_{\text {clk (max) }}$	maximum clock frequency				25	MHz

13. Application information

13.1 Analog inputs

13.1.1 Input stage description

The ADC1413D inputs can be configured as single-ended or differential (selected via SPI control bit DIFF/SE; see Table 20). Optimal performance is achieved using differential inputs with the common-mode input voltage, $\mathrm{V}_{\mathrm{I}(\mathrm{cm})}$, set to $\mathrm{V}_{\mathrm{DDA}} / 2$.

The full scale analog input voltage range is configurable between $\pm 1 \mathrm{~V}(p-p)$ and $\pm 2 \mathrm{~V}(\mathrm{p}-\mathrm{p})$ via a programmable internal reference (see Section 13.2 and Table 21 for further details).

The equivalent circuit of the sample and hold input stage, including ESD protection and circuit and package parasitics, is shown in Figure 5.

Fig 5. Input sampling circuit
The sample phase HIGH, because of the NMOS transistors. The voltage is then held on the sampling capacitors. When the clock signal goes LOW, the stage enters the hold phase and the voltage information is transmitted to the ADC core.

13.1.2 Anti-kickback circuitry

Anti-kickback circuitry is needed to counteract the effects of charge injection generated by the sampling capacitance. This consists of an RC filter containing a resistor in series (typically 12Ω to 25Ω) and a capacitor in parallel (typically 8 pF to 12 pF).

The RC filter is also used to filter noise from the signal before it reaches the sampling stage. The value of the capacitor should be chosen to maximize noise attenuation without degrading the settling time too much.

The RC coupling is determined by the input frequency and should be selected so as not to affect the input bandwidth.

Table 9. RC coupling versus input frequency

Input frequency	\mathbf{R}	\mathbf{C}
3 MHz	25Ω	12 pF
70 MHz	12Ω	8 pF
170 MHz	12Ω	8 pF

13.1.3 Transformer

The configuration of the transformer circuit is determined by the input frequency. The configuration shown in Figure 6 would be suitable for a baseband application.

Fig 6. Single transformer configuration

Fig 7. Dual transformer configuration
The configuration shown in Figure 7 is recommended for high frequency applications. In both cases, the choice of transformer will be a compromise between cost and performance.

13.2 System reference and power management

13.2.1 Internal/external reference

The ADC1413D has a stable and accurate built-in internal reference voltage. This reference voltage can be set internally, externally or programmed, in 1 dB steps between 0 dB and -6 dB , via SPI control bits INTREF (when bit INTREF_EN = 1; see Table 21). The equivalent reference circuit is shown in Figure 8.

Fig 8. Reference equivalent schematic
Table 10 shows how to choose between the different internal/external modes:
Table 10. Reference modes

Mode	SPI Bit, "Internal reference"	SENSE pin	VREF pin	Full Scale, V (p-p)
Internal	0	GND	330 pF capacitor to GND	
Internal	0	VREF pin = SENSE pin and 330 pF capacitor to GND	1	
External	0	VDDA	External voltage 1 to 2 from 0.5 V to 1 V	
Internal, SPI mode	1	VREF pin = SENSE pin and 330 pF capacitor to GND	1 to 2	

Figure 9, Figure 10, Figure 11 and Figure 12 indicate how to connect the SENSE and VREF pins.

Fig 9. Internal reference, 2 V ($\mathrm{p}-\mathrm{p}$) full scale

Fig 10. Internal reference, $1 \mathrm{~V}(\mathrm{p}-\mathrm{p})$ full scale

Fig 11. Internal reference, SPI, 1 V (p-p) to 2 V (p-p) full scale

Fig 12. External reference, 1 V (p-p) to 2 V (p-p) full scale

13.2.2 Gain control

The gain is programmable between 0 dB to -6 dB in steps of 1 dB via the SPI (see Table 21). This makes it possible to improve the Spurious-Free Dynamic Range (SFDR) of the ADC1413D. The corresponding full scale input voltage range varies between $2 \mathrm{~V}(p-p)$ and $1 \mathrm{~V}(p-p)$, as shown in Table 11:

Table 11. Reference SPI gain control

Programmable_int_ref	Level	Full Scale, V (p-p)
000	0 dB	2
001	-1 dB	1.78
010	-2 dB	1.59
011	-3 dB	1.42
100	-4 dB	1.26
101	-5 dB	1.12
110	-6 dB	1
111	not used	x

13.2.3 Common-mode output voltage $\left(\mathrm{V}_{\mathrm{I}(\mathrm{cm})}\right)$

An $0.1 \mu \mathrm{~F}$ filter capacitor should be connected between on the one hand the pins VCMA and VCMB and on the other hand ground to ensure a low-noise common-mode output voltage. When AC-coupled, these pins can be used to set the common-mode reference for the analog inputs, for instance via a transformer middle point.

Fig 13. Reference equivalent schematic

13.2.4 Biasing

The common-mode output voltage, $\mathrm{V}_{\mathrm{O}(\mathrm{cm})}$, should be set externally to 1.5 V (typical).The common-mode input voltage, $\mathrm{V}_{\mathrm{I}(\mathrm{cm})}$, at the inputs to the sample and hold stage (pins INAM, INBM, INAP, and INBP) must be between 0.9 V and 2 V for optimal performance. Figure 14 illustrates how the SFDR and SNR characteristics vary with changes in the common-mode input voltage.

Fig 14. SFDR and SNR performances versus common-mode voltage

13.3 Clock input

13.3.1 Drive modes

The ADC1413D can be driven differentially (SINE, LVPECL or LVDS) without the performance being affected by the choice of configuration. It can also be driven by a single-ended LVCMOS signal connected to pin CLKP (CLKM should be connected to ground via a capacitor).

Fig 15. LVCMOS single-ended clock input

Fig 16. Sine differential clock input

Fig 17. LVDS differential clock input

13.3.2 Equivalent input circuit

The equivalent circuit of the input clock buffer is shown in Figure 18. The common-mode voltage of the differential input stage is set via internal resistors of $5 \mathrm{k} \Omega$ resistors.

Fig 18. Equivalent input circuit
Single-ended or differential clock inputs can be selected via the SPI interface (see Table 20). If single-ended is selected, the input pin (CLKM or CLKP) is selected via control bit SE_SEL.

If single-ended is implemented without setting SE_SEL accordingly, the unused pin should be connected to ground via a capacitor.

13.3.3 Duty cycle stabilizer

The duty cycle stabilizer can improve the overall performances of the ADC by compensating the input clock signal duty cycle. When the duty cycle stabilizer is active (bit DCS_EN = 1; see Table 20), the circuit can handle signals with duty cycles of between 30% and 70% (typical). When the duty cycle stabilizer is disabled (DCS_EN = 0), the input clock signal should have a duty cycle of between 45% and 55%.

Table 12. Duty cycle stabilizer

DCS_enable SPI	Description
0	Duty cycle stabilizer disable
1	Duty cycle stabilizer enable

13.4 Digital outputs

13.4.1 Serial output equivalent circuit

The JESD204A standard specify that in case of connecting the receiver and the transmitter in DC coupling, both of them need to be provided by the same supply.

Fig 19. CML output connection to the receiver in DC coupling
The output should be terminated when 100Ω (typical) has been reached at the receiver side.

Fig 20. CML output connection to the receiver in AC coupling

13.5 JESD204A serializer

13.5.1 Digital JESD204A formatter

The block placed after the ADC cores is used to implement all functionalities of the JESD204A standard. This ensures signal integrity and guarantees the clock and the data recovery at the receiver side.

The block is highly parameterized and can be configured in various ways depending on the sampling frequency and the number of lanes used.

Fig 21. General overview of the JESD204A serializer

Fig 22. Detailed view of the JESD204A serializer with debug functionality

13.5.2 ADC core output codes versus input voltage

Table 13 shows the data output codes for a given analog input voltage.
Table 13. Output codes versus input voltage

INP-INM (V)	Offset binary	Two's complement	OTR
--1	00000000000000	10000000000000	1
-1	00000000000000	10000000000000	0
-0.9998779	00000000000001	10000000000001	0
-0.9997559	00000000000010	10000000000010	0
-0.9996338	00000000000011	10000000000011	0
-0.9995117	00000000000100	10000000000100	0
\ldots	\ldots	\ldots	0
-0.0002441	01111111111110	11111111111110	0
-0.0001221	01111111111111	11111111111111	0
0	10000000000000	00000000000000	0
+0.0001221	10000000000001	00000000000001	0
+0.0002441	10000000000010	00000000000010	0
\ldots	\ldots	\ldots.	0
+0.9995117	11111111111011	01111111111011	0
+0.9996338	11111111111100	01111111111100	0
+0.9997559	11111111111101	01111111111101	0
+0.9998779	11111111111110	01111111111110	0
+1	11111111111111	0111111111111	0
$>+1$	11111111111111	01111111111111	1

13.6 Serial Peripheral Interface (SPI)

13.6.1 Register description

The ADC1413D serial interface is a synchronous serial communications port allowing for easy interfacing with many industry microprocessors. It provides access to the registers that control the operation of the chip in both read and write modes.

This interface is configured as a 3-wire type (SDIO as bidirectional pin).
SCLK acts as the serial clock, and CSB acts as the serial chip select bar.
Each read/write operation is sequenced by the CSB signal and enabled by a LOW level to to drive the chip with 2 bytes to 5 bytes, depending on the content of the instruction byte (see Table 14).

Table 14. Instruction bytes for the SPI

	MSB						LSB	
Bit	7	6	5	4	3	2	1	0
Description	R/W $[1]$	W1	W0	A12	A11	A10	A9	A8
	A7	A6	A5	A4	A3	A2	A1	A0

[^0]Table 15. Read or Write mode access description

\mathbf{R} / \mathbf{W} [1]	Description
0	Write mode operation
1	Read mode operation

[1] Bits W1 and W0 indicate the number of bytes transferred after the instruction byte.

Table 16. Number of bytes to be transferred

W1	W0	Number of bytes
0	0	1 byte transferred
0	1	2 bytes transferred
1	0	3 bytes transferred
1	1	4 or more bytes transferred

Bits A12 to A0 indicate the address of the register being accessed. In the case of a multiple byte transfer, this address is the first register to be accessed. An address counter is incremented to access subsequent addresses.

The steps involved in a data transfer are as follows:

1. The falling edge on CSB in combination with a rising edge on SCLK determine the start of communications.
2. The first phase is the transfer of the 2-byte instruction.
3. The second phase is the transfer of the data which can be vary in length but will always be a multiple of 8 bits. The MSB is always sent first (for instruction and data bytes)

Fig 23. Transfer diagram for 2 data bytes (3 wires mode)

13.6.2 Channel control

The two ADC channels can be configured at the same time or separately. By using the register "Channel index", the user can choose which ADC channel will receive the next SPI-instruction. By default the channel A and B will receive the same instructions.

Dual 14 bits ADC; 65, 80, 105 or 125 Msps

Table 17. Register allocation map

Addr Register name Hex		R/W	Bit definition								Default Bin	
		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0003	Channel index		R/W		-	-	-	-	-	ADCB	ADCA	$\begin{aligned} & 1111 \\ & 1111 \end{aligned}$
0005	Reset and Operating modes	R/W	$\begin{aligned} & \text { SW- } \\ & \text { RST } \end{aligned}$	-	-	-	-	-	$\mathrm{PD}[1: 0]$		$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$	
0006	Clock	R/W	-	-	-	SE_SEL	DIFF/SE	-	CLKDIV2 SEL	DCS_EN	$\begin{aligned} & 0000 \\ & 000 X \end{aligned}$	
0008	Vref	R/W	-	-	-	-	INTREF_ EN	INTR	2:0]		$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$	
0011	Output data standard	R/W	-	-	-	LVDS/ CMOS	OUTBUF	-	DATA_FOR	MAT	$\begin{aligned} & \text { 000X } \\ & 0 X X X \end{aligned}$	
0013	Offset	R/W	-	-	DIG_OF	SET[5:0]					$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$	
0014	Test pattern 1	R/W	-	-	-	-	-	TES	1[2:0]		$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$	
0015	Test pattern 2	R/W	TESTPAT_2[13:6]								$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$	
0016	Test pattern 3	R/W	TESTPAT_3[5:0]								$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$	
JESD204A control												
0801	Ser_Status	R	0	RESERVED[2:0]			0	0	POR_TST	$\begin{aligned} & \text { PLL } \\ & \text { INLOCK } \end{aligned}$	$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$	
0802	Ser_Reset	R/W	$\begin{aligned} & \text { SW- } \\ & \text { RST } \end{aligned}$		0	0	$\begin{aligned} & \text { FSM_SW_ } \\ & \text { RST } \end{aligned}$	0	0	0	$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$	
0803	Ser_Cfg_Setup	R/W	0	0	0	0	CFG_SETUP[3:0]				0000	
0805	Ser_Control1	R/W	0	$\begin{array}{ll} \text { TriState SYNC_ } & \text { SYNC_ } \\ \text { CFG_ POL } & \text { SINGLE } \\ \hline \text { PAD } & \text { ENDED } \end{array}$			1	RESERVED[2:0]			$\begin{aligned} & 0100 \\ & 1000 \end{aligned}$	
0806	Ser_Control2	R/W	0	0	0	0	0		SWAP LANE_1_	$\begin{aligned} & \text { SWAP_- } \\ & 1 \\ & \text { ADC_0_ } \end{aligned}$	$\begin{aligned} & 0000 \\ & 00^{* *} \end{aligned}$	
0808	Ser_Analog_Ctrl	R/W	0	0	0	0	0	SWIN	SEL[2:0]		$\begin{aligned} & 0000 \\ & 01^{* *} \end{aligned}$	
0809	Ser_ScramblerA	R/W	LSB_INIT[7:0]								$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$	
080A	Ser_ScramblerB	R/W	MSB_INIT[7:0]								$\begin{aligned} & 1111 \\ & 1111 \end{aligned}$	
080B	Ser_PRBS_Ctrl	R/W	0	0	0	0	0	0	PRBS_TYPE[1:0]		$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$	
0820	Cfg_0_DID	$\begin{aligned} & \mathrm{R} / \mathrm{W}^{*} \\ & \underline{[2]} \end{aligned}$	DID[7:0]								$\begin{aligned} & 1110 \\ & 1101 \end{aligned}$	
0821	Cfg_1_BID	R/W*	0	0	0	0	BID[3:0]				$\begin{aligned} & 0000 \\ & 1010 \end{aligned}$	
0822	Cfg_3_SCR_L	R/W*	SCR	0	0	0	0	0	0	L	$\begin{aligned} & * 000 \\ & 000{ }^{*} \end{aligned}$	

Table 17. Register allocation map ...continued

	Register name	R/W		nition							Default
Hex			Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Bin
0823	Cfg_4_F	R/W*	0	0	0	0	0	F[2:0]			$\begin{aligned} & 0000 \\ & 0^{\star * *} \end{aligned}$
0824	Cfg_5_K	R/W*	0	0	0	K[4:0]					000*****
0825	Cfg_6_M	R/W*	0	0	0	0	0	0	0	M	$\begin{aligned} & 0000 \\ & 000^{*} \end{aligned}$
0826	Cfg_7_CS_N	R/W*	0	CS[0]	0	0	0	N[2:0]			$\begin{aligned} & 0100 \\ & 0^{* * *} \end{aligned}$
0827	Cfg_8_Np	R	0	0	0	NP[4:0]					$\begin{aligned} & 0000 \\ & 1111 \end{aligned}$
0828	Cfg_9_S	R/W*	0	0	0	0	0	0	0	S	$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$
0829	Cfg_10_HD_CF	R/W*	HD	0	0	0	0	0	CF[1:0]		$\begin{aligned} & * 000 \\ & 0000 \end{aligned}$
082C	Cfg_01_2_LID	R/W*	0	0	0	LID[4:0]					$\begin{aligned} & 0001 \\ & 1011 \end{aligned}$
082D	Cfg_02_2_LID	R/W*	0	0	0	LID[4:0]					$\begin{aligned} & 0001 \\ & 1100 \end{aligned}$
084C	Cfg01_13_FCHK	R	FCHK								$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$
084D	Cfg02_13_FCHK	R	FCHK								$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$
0870	Lane01_0_Ctrl	R/W	0	$\begin{aligned} & \text { SCR_ } \\ & \text { IN- } \\ & \text { MODE } \end{aligned}$	LANE	OODE[1:0]	0	LANE POL	LANE CLK POS EDGE	$\begin{aligned} & \text { LANE_ }_{\text {PD }} \end{aligned}$	$\begin{aligned} & 0000 \\ & 000^{*} \end{aligned}$
0871	Lane02_0_Ctrl	R/W	0	$\begin{aligned} & \text { SCR_ } \\ & \text { IN_- } \\ & \text { MODE } \end{aligned}$	LANE	MODE[1:0]	0	LANE POL	LANE CLK_POS EDGE	LANE_ PD	$\begin{aligned} & 0000 \\ & 000^{*} \end{aligned}$
0890	Adc01_0_Ctrl	R/W	0	0	ADC	ODE[1:0]	0	0	0	ADC_PD	$\begin{aligned} & 0000 \\ & 000^{*} \end{aligned}$
0891	Adc02_0_Ctrl	R/W	0	0	ADC	ODE[1:0]	0	0	0	ADC_PD	$\begin{aligned} & 0000 \\ & 000^{*} \end{aligned}$

[1] an "*" in the Default column replaces a bit of which the value depends on the binary level of external pins (e.g. CFG[3:0], Swing[1:0], Scrambler).
[2] an "*" in the Access column means that this register is subject to control access conditions in Write mode.

13.6.3 Register description

Table 18. Register channel Index (address 0003h)

Bit	Symbol	Access	Value	Description
1	ADCB	R/W		ADCB will get the next SPI command:
		0	ADCB not selected	
			1	ADCB selected
0	ADCA	R/W		ADCA will get the next SPI command:
		0	ADCA not selected	
				ADCA selected

[^1]Table 19. Register reset and Power-down mode (address 0005h)

Bit	Symbol	Access	Value	Description
7	SW_RST	R/W		Reset digital part:
			0	no reset
			1	performs a reset of the digital part
1 to 0	PD	R/W		Power-down mode:
			00	normal (power-up)
			01	full power-down
			10	sleep
			11	normal (power-up)

Table 20. Register clock (address 0006h)

Bit	Symbol	Access	Value	Description
4	SE_SEL	R/W		Select SE clock input pin:
			0	Select CLKM input
			1	Select CLKP input
3	DIFF/SE	R/W		Differential/single ended clock input select:
			0	Fully differential
			1	Single-ended
1	CLKDIV2_SEL	R/W		Select clock input divider by 2 :
			0	disable
			1	active
0	DCS_EN	R/W		Duty cycle stabilizer enable:
			0	disable
			1	active

Table 21. Register Vref (address 0008h)

Bit	Symbol	Access	Value	Description
	INTREF_EN	R/W		Enable internal programmable VREF mode:
			0	disable
			1	active
2 to 0	INTREF	R/W		Programmable internal reference:
			000	0 dB (FS=2 V)
			001	-1 dB (FS=1.78 V)
			010	-2 dB (FS=1.59 V)
			011	-3 dB (FS=1.42 V)
			100	-4 dB (FS=1.26 V)
			101	-5 dB (FS=1.12 V)
			110	-6 dB (FS=1 V)
			111	not used

Table 22. Digital offset adjust

Register offset: (address 0013h)		
Dec	Digital_Offset_Adjust[5:0]	
+31	011111	+31 LSB
\ldots	\ldots	\ldots
0	000000	0
\ldots	\ldots	\ldots
-32	100000	-32 LSB

Table 23. Register test pattern 1 (address 0014h)

Bit	Symbol	Access	Value	Description
2 to 0	TESTPAT_1	R/W		Digital test pattern:
			000	off
			001	mid-scale
			010	- FS
			011	+ FS
			100	toggle '1111..1111'/'0000..0000'
			101	Custom test pattern, to be written in register 0015h and 0016h
			110	'010101...'
			111	'101010...'

Table 24. Register test pattern 2 (address 0015h)

Bit	Symbol	Access	Value
13 to 6	TESTPAT_2	R/W	Description

Table 25. Register test pattern 3 (address 0016h)

Bit	Symbol	Access	Value	Description
5 to 0	TESTPAT_3	R/W		Custom digital test pattern

13.6.4 JESD204A digital control registers

Table 26. SER status (address 0801h)

Bit	Symbol	Access	Value	Description
7 to 1	-		Not used	
0	PLL_Inlock	R	0	Indicates status of PLL

Table 27. SER reset (address 0802h)

Bit	Symbol	Access	Value	Description
7	SW_RST	R/W	0	Initiates a software reset of the JEDEC204A unit
6 to 4	-		000	Not used
3	FSM_SW_RST	R/W	0	Initiates a software reset of the internal state machine of JEDEC204A unit
2 to 0	-	000	Not used	ONXP B.v. 2009. All rights reserved.
ADC1413D065_080_105_125_2				27 of 38
Objective data sheet			Rev. $02-4$ June 2009	

Table 28. SER cfg set-up (address 0803h)

Bit	Symbol	Access	Value	Description
7 to 4	-	R	0000	Not used
3 to 0	CFG_SETUP	R/W	$\begin{aligned} & 0000 \\ & \text { (reset) } \end{aligned}$	Defines quick JESD204A configuration. These settings overrule the CFG_PAD configuration
			0000	ADC0: ON; ADC1: ON; Lane0: ON; Lane1: ON; F = 2; $\mathrm{HD}=0 ; \mathrm{K}=9$; $M=2 ; L=2 \underline{[1]}$
			0001	ADC0: ON; ADC1: ON; Lane0: ON; Lane1: OFF; $F=4 ; H D=0 ; K=5$; $M=2 ; L=1 \underline{[1]}$
			0010	ADC0: ON; ADC1: ON; Lane0: OFF; Lane1: ON; $F=4 ; H D=0 ; K=5$; $M=2 ; L=1$ swap line $=1 \underline{[1]}$
			0011	ADC0: ON; ADC1: OFF; Lane0: ON; Lane1: ON; $F=1 ; H D=1 ; K=17 ;$ $M=1 ; L=2[1]$
			0100	ADC0: OFF; ADC1: ON; Lane0: ON; Lane1: ON; $F=1 ; H D=1 ; K=17 ;$ $M=1 ; L=2 ;$ swap adc $=1 \underline{[1]}$
			0101	ADC0: ON; ADC1: OFF; Lane0: ON; Lane1: OFF; $F=2 ; H D=0 ; K=9$; $M=1 ; L=1 \underline{[1]}$
			0110	ADC0: ON; ADC1: OFF; Lane0: OFF; Lane1: ON; $F=2 ; H D=0 ; K=9 ;$ $M=1$; $L=1$; swap line $=1 \underline{[1]}$
			0111	ADC0: OFF; ADC1: ON; Lane0: ON; Lane1: OFF; $F=2 ; H D=0 ; K=9 ;$ $M=1 ; L=1$; swap adc $=1 \underline{[1]}$
			1000	ADC0: OFF; ADC1: ON; Lane0: OFF; Lane1: ON; $F=2 ; H D=0 ; K=9 ;$ $M=1 ; L=1$; swap adc = 1 ; swap line $=1 \underline{[1]}$
			$\begin{aligned} & 1001 \text { to } \\ & 1101 \end{aligned}$	Reserved
			1110	ADC0: OFF; ADC1: OFF; Lane0: ON; Lane1: ON; F = 2; $\mathrm{HD}=0 ; \mathrm{K}=9$; $M=2 ; L=2$; loop alignment = $1 \underline{[1]}$
			1111	ADCO: OFF; ADC1: OFF; Lane0: OFF; Lane1: OFF; F = 2; HD = 0; $\mathrm{K}=9 ; \mathrm{M}=2 ; \mathrm{L}=2 \rightarrow \mathrm{PD}[\mathrm{l}]$

[1] F: number of byte per frame; HD: High density; K: number of frames per multi frame; M: number of converters; L: number of lanes
See the information about the JESD204A standard on the JEDEC web site.
Table 29. SER control1 (address 0805h)

Bit	Symbol	Access	Value	Description
7	-	R	0	Not used
6	TRISTATE_CFG_PAD	R/W	1 (default)	CFG pads (3 to 0) are set to high-impedance
5	SYNC_POL	R/W		Defines the sync signal polarity:
			0 (default)	Synchronization signal is active low
			1	Synchronization signal is active high
4	SYNC_SINGLE_ENDED	R/W		Defines the input mode of the sync signal:
			0 (default)	Synchronization input mode is set in Differential mode
			1	Synchronization input mode is set in Single-ended mode
3	-	R	1	Not used
2	REV_SCR	-		Enables swapping bits at the scrambler input
			0 (default)	
			1	LSB are swapped to MSB at the scrambler input

Table 29. SER control1 (address 0805h) ...continued

Bit	Symbol	Access	Value	Description
1	REV_ENCODER	-		Enables swapping bits at the 8b/10b encoder input:
			0 (defaut)	
				LSB are swapped to MSB at the 8b/10b encoder input
0	REV_SERIAL	-		Enables swapping bits at the lane input (before serializer):
			0 (defaut)	
			1	LSB are swapped to MSB at the lane input

Table 30. SER control2 (address 0806h)

Bit	Symbol	Access	Value	Description
7 to 2	-	R	000000	Not used

Table 31. SER analog ctrl (address 0808h)

Bit	Symbol	Access	Value	Description
7 to 3	-	R	0	Not used
2 to 0	SWING_SEL	R/W	000	Defines the swing output for the lane pads

Table 32. SER scramblerA (address 0809h)
\(\left.\begin{array}{lllll}Bit \& Symbol \& Access \& Value \& Description

\hline 7 \& - \& R \& 0 \& Not used\end{array}\right]\)| Refines the initialization vector for the scrambler polynomial |
| :--- |
| 6 to 0 | LSB_INIT \quad (Lower) | R/W |
| :--- |

Table 33. SER scramblerB (address 080Ah)

Bit	Symbol	Access	Value	Description
7 to 0	UPP_VECT_INIT	R/W	11111111	Defines the initialization vector for the scrambler polynomial (Upper)

Table 34. SER PRBS Ctrl (address 080Bh)

Bit	Symbol	Access	Value	Description
7 to 2	-	R	000000	Not used
1 to 0	PRBS_TYPE	R/W		Defines the type of Pseudo-Random Binary Sequence (PRBS) generator to be used:
		00 (reset)	PRBS-7	
01	PRBS-7			
		10	PRBS-23	
11	PRBS-31			

Table 35. Cfg_0_DID (address 0820h)

Bit	Symbol	Access	Value	Description
7 to 0	DID	R	11101101	Defines the device (= link) identification number

Table 36. Cfg_1_BID (address 0821h)

Bit	Symbol	Access	Value	Description
7 to 4	-	R	0000	Not used
3 to 0	BID	R/W	1010	Defines the bank ID - extension to DID

Table 37. Cfg_3_SCR_L (address 0822h)

Bit	Symbol	Access	Value	Description
7	SCR	R/W	0	Scrambling enabled
6 to 1	-	R	000000	Not used
0	L	R/W	0	Defines the number of lanes per converter device, minus 1

Table 38. Cfg_4_F (address 0823h)

Bit	Symbol	Access	Value	Description
7 to 3	-	R	00000	Not used
2 to 0	F	R/W	000	Defines the number of octets per frame, minus 1

Table 39. Cfg_5_K (address 0824h)

Bit	Symbol	Access	Value	Description
7 to 5	-	R	000	Not used
4 to 0	K	R/W	00000	Defines the number of frames per multiframe, minus 1

Table 40. Cfg_6_M (address 0825h)

Bit	Symbol	Access	Value	Description
7 to 1	-	R	0000000	Not used
0	M	R / W	0	Defines the number of converters per device, minus 1

Table 41. Cfg_7_CS_N (address 0826h)

Bit	Symbol	Access	Value	Description
7	-	R	0	Not used
6	CS	R/W	0	Defines the number of control bits per sample, minus 1
5 to 4	-	R	00	Not used
3 to 0	N	R/W	0000	Defines the converter resolution

Table 42. Cfg_8_Np (address 0827h)

Bit	Symbol	Access	Value	Description
7 to 5	-	R	000	Not used
4 to 0	NP	R/W	00000	Defines the total number of bits per sample, minus 1

Table 43. Cfg_9_S (address 0828h)

Bit	Symbol	Access	Value	Description
7 to 1	-	R	0000000	Not used
0	S	R/W	0	Defines number of samples per converter per frame cycle

Table 44. Cfg_10_HD_CF (address 0829h)

Bit	Symbol	Access	Value	Description
7	HD	R/W	0	Defines high density format
6 to 2	-	R	00000	Not used
1 to 0	CF	R/W	00	Defines number of control words per frame clock cycle per link.

Table 45. Cfg01_2_LID (address 082Ch)

Bit	Symbol	Access	Value	Description
7 to 5	-	R	000	Not used
4 to 0	LID	R/W	11011	Defines lane1 identification number

Table 46. Cfg02_2_LID (address 082Dh)

Bit	Symbol	Access	Value	Description
7 to 5	-	R	000	Not used
4 to 0	LID	R/W	11100	Defines lane2 identification number

Table 47. Cfg02_13_fchk (address 084Ch)

Bit	Symbol	Access	Value	Description
7 to 0	FCHK	R	00000000	Defines the checksum value for lane1
			Checksum corresponds to the sum of all the link configuration parameters modulo 256 (as defined in JEDEC Standard No.204A)	

Table 48. Cfg01_13_fchk (address 084Dh)

Bit	Symbol	Access	Value	Description
7 to 0	FCHK	R	00000000	Defines the checksum value for lane1
	Checksum corresponds to the sum of all the link configuration parameters module 256 (as defined in JEDEC Standard No.204A)			

Table 49. Lane01_0_ctrl (address 0870h)

Bit	Symbol	Access	Value	Description
7	-	R	0	Not used
6	SCR_IN_MODE	R/W		Defines the input type for scrambler and 8b/10b units:
			0 (reset)	(Normal mode) = Input of the scrambler and $8 \mathrm{~b} / 10 \mathrm{~b}$ units is the output of the frame assembly unit.
			1	Input of the scrambler and 8b/10b units is the PRSB generator (PRBS type is defined with "PRBS_TYPE" (Ser_PRBS_ctrl register)
5 to 4	LANE_MODE	R/W		Defines output type of Lane output unit:
			00 (reset)	Normal mode: Lane output is the $8 \mathrm{~b} / 10 \mathrm{~b}$ output unit
			01	Constant mode: Lane output is set to a constant (0×0)
			10	Toggle mode: Lane output is toggling between 0×0 and 0×1
			11	PRBS mode: Lane output is the PRSB generator (PRBS type is defined with "PRBS_TYPE" (Ser_PRBS_ctrl register)
3	-	R	0	Not used
2	LANE_POL	R/W		Defines lane polarity:
			0	Lane polarity is normal
			1	Lane polarity is inverted
1	LANE_CLK_POS_EDGE	R/W		Defines lane clock polarity:
			0	Lane clock provided to the serializer is active on positive edge
			1	Lane clock provided to the serializer is active on negative edge
0	Lane_PD	R/W		Lane power-down control:
			0	
			1	Lane is in Power-down mode

Table 50. Lane02_0_ctrl (address 0871h)

Bit	Symbol	Access	Value	Description
7	-	R	0	Not used

Table 50. Lane02_0_ctrl (address 0871h) ...continued

Bit	Symbol	Access	Value	Description
5 to 4	LANE_MODE	R/W		Defines output type of lane output unit:
			00 (reset)	Normal mode: Lane output is the $8 \mathrm{~b} / 10 \mathrm{~b}$ output unit
			01	Constant mode: Lane output is set to a constant (0x0)
			10	Toggle mode: Lane output is toggling between 0×0 and 0×1
			11	PRBS mode: Lane output is the PRSB generator (PRBS type is defined with "PRBS_TYPE" (Ser_PRBS_ctrl register)
3	-	R	0	Not used
2	LANE_POL	R/W		Defines lane polarity:
			0	Lane polarity is normal
			1	Lane polarity is inverted
1	LANE_CLK_POS_EDGE	R/W		Defines lane clock polarity:
			0	Lane clock provided to the serializer is active on positive edge
			1	Lane clock provided to the serializer is active on negative edge
0	Lane_PD	R/W		Lane power-down control:
			0	
			1	Lane is in Power-down mode

Table 51. ADC01_0_ctrl (address 0890h)

Bit	Symbol	Access	Value	Description
7 to 6	-	R	00	Not used
5 to 4	ADC_MODE	R/W		Defines input type of JESD204A unit:
			00 (reset)	ADC output is connected to the JESD204A input
			01	Not used
			10	JESD204A input is fed with a dummy constant, set to: OTR = 1 and ADC[13:0] = "10011011101010"
			11	JESD204A is fed with a PRBS generator (PRBS type is defined with "PRBS_TYPE" (Ser_PRBS_ctrl register)
3 to 1	-	R	000	Not used
0	ADC_PD	R/W	0	ADC power-down control:
			0	
			1	ADC is in Power-down mode

Table 52. ADC02_0_ctrl (address 0891h)

Bit	Symbol	Access	Value	Description
7 to 6	-	R	00	Not used
5 to 4	ADC_MODE	R/W	00 (reset)	Defines input type of JESD204A unit
			00	ADC output is connected to the JESD204A input
			01	Not used
			10	JESD204A input is fed with a dummy constant, set to: OTR = 1 and ADC[13:0] = "10011011101010"
			11	JESD204A is fed with a PRBS generator (PRBS type is defined with "PRBS_TYPE" (Ser_PRBS_ctrl register)
3 to 1	-	R	000	Not used
ADC1413D065_080_105_125_2Objective data sheet				© NXP B.V. 2009. All rights reserved.
			Rev.	2 - 4 June 200933 of 38

Table 52. ADC02_0_ctrl (address 0891h) ...continued

Bit	Symbol	Access	Value	Description
0	ADC_PD	R/W		ADC power-down control:
		$\frac{0}{1}$		
			ADC is in Power-down mode	

13.6.5 Serial interface timings

The Figure 24 shows the SPI timings:

Fig 24. SPI timings
The timing specification link to Figure 24 is described in the Table 8.

14. Package outline

HVQFN56: plastic thermal enhanced very thin quad flat package; no leads;
56 terminals; body $8 \times 8 \times 0.85 \mathrm{~mm}$

1. Plastic or metal protrusions of 0.075 mm maximum per side are not included

Outline version	References			European projection	Issue date
	IEC	JEDEC	JEITA		
SOT684-7	---	MO-220	-- -		$\begin{aligned} & \hline 08-11-19 \\ & 09-03-04 \end{aligned}$

Fig 25. Package outline SOT684-1 (HVQFN56)

15. Revision history

Table 53. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
ADC1413D065_080_105_125_2	20090604	Objective data sheet	-	ADC1413D065_080_105_125_1
Modifications:	\bullet Values in Table 7 have been updated.			
ADC1413D065_080_105_125_1	20090528	Objective data sheet	-	-

16. Legal information

16.1 Data sheet status

Document status ${ }^{[1][2]}$	Product status $[3]$	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.
[2] The term 'short data sheet' is explained in section "Definitions".
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

16.2 Definitions

Draft - The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet - A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

16.3 Disclaimers

General - Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.
Suitability for use - NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications - Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values - Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.
Terms and conditions of sale - NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license - Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control - This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.
Quick reference data - The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

18. Contents

1 General description 1 16.3
Disclaimers 37
2 Features1
3 Applications 1
4 Ordering information 2
5 Block diagram 3
6 Pinning information 4
6.1 Pinning 4
6.2 Pin description 4
7 Limiting values 6
8 Thermal characteristics. 6
9 Static characteristics. 6
10 Dynamic characteristics 9
11 Clock and digital output timing 10
11.1 Serial output timings 10
12 SPI timing 11
13 Application information. 12
13.1 Analog inputs 12
13.1.1 Input stage description 12
13.1.2 Anti-kickback circuitry 13
13.1.3 Transformer. 13
13.2 System reference and power management 14
13.2.1 Internal/external reference 14
13.2.2 Gain control 16
13.2.3 Common-mode output voltage $\left(\mathrm{V}_{\mathrm{l}(\mathrm{cm})}\right)$ 17
13.2.4 Biasing 17
13.3 Clock input 18
13.3.1 Drive modes 18
13.3.2 Equivalent input circuit 18
13.3.3 Duty cycle stabilizer 19
13.4 Digital outputs 19
13.4.1 Serial output equivalent circuit 19
13.5 JESD204A serializer. 20
13.5.1 Digital JESD204A formatter 20
13.5.2 ADC core output codes versus input voltage 22
13.6 Serial Peripheral Interface (SPI) 22
13.6.1 Register description 22
13.6.2 Channel control. 23
13.6.3 Register description 25
13.6.4 JESD204A digital control registers 27
13.6.5 Serial interface timings 34
14 Package outline 35
15 Revision history 36
16 Legal information 37
16.1 Data sheet status 37
16.2 Definitions 37
Trademarks 37
Contact information 37
17Contents38-

[^0]: [1] R/W indicates whether a read or write transfer occurs after the instruction byte

[^1]: ADC1413D065_080_105_125_2

