

# AN2847 Application note

LIS331DLH:  $\pm 2~g/\pm 4~g/\pm 8~g$  digital output high performance ultra low-power 3-axis accelerometer

#### Introduction

This document provides application information for the low-voltage 3-axis digital output linear MEMS accelerometer provided in the LGA package.

The LIS331DLH is a high performance ultra low-power 3-axis linear accelerometer, which belongs to the "nano" family of MEMS accelerometers, with digital I<sup>2</sup>C/SPI serial interface standard output.

The device features ultra low-power operational modes that allow advanced power saving and smart Sleep to Wakeup functions.

The LIS331DLH has dynamically user-selectable full scales of  $\pm 2~g/\pm 4~g/\pm 8~g$  and is capable of measuring acceleration with output data rates from 0.5 Hz to 1 kHz.

The self-test capability allows the user to check the functioning of the sensor in the final application.

The device can be configured to generate interrupt signals in response to inertial wakeup/free-fall events, or based on the position of the device itself.

The thresholds and timing of interrupt generators are programmable by the end user while fully operational. The LIS331DLH is available in a small, thin plastic land grid array (LGA) package, and is guaranteed to operate over a wide temperature range of -40 °C to +85 °C.

January 2009 Rev 1 1/29

Contents AN2847

## **Contents**

| 1    | Regi     | ister tab                        | ole                                     |  |  |  |  |  |  |
|------|----------|----------------------------------|-----------------------------------------|--|--|--|--|--|--|
| 2    | Star     | Start-up sequence 7              |                                         |  |  |  |  |  |  |
|      | 2.1      | Readir                           | ng acceleration data                    |  |  |  |  |  |  |
|      |          | 2.1.1                            | Using the status register8              |  |  |  |  |  |  |
|      |          | 2.1.2                            | Using the data-ready signal             |  |  |  |  |  |  |
|      |          | 2.1.3                            | Using the block data update feature8    |  |  |  |  |  |  |
|      | 2.2      | Output                           | data rate selection and reading timing9 |  |  |  |  |  |  |
|      | 2.3      | Data re                          | eady vs. interrupt signal 10            |  |  |  |  |  |  |
|      | 2.4      | Unders                           | standing acceleration data 11           |  |  |  |  |  |  |
|      |          | 2.4.1                            | Data alignment                          |  |  |  |  |  |  |
|      |          | 2.4.2                            | Big-little endian selection             |  |  |  |  |  |  |
|      |          | 2.4.3                            | Example of acceleration data11          |  |  |  |  |  |  |
| 3    | Ope      | Operating modes                  |                                         |  |  |  |  |  |  |
|      | 3.1      | Normal mode                      |                                         |  |  |  |  |  |  |
|      | 3.2      | Power down mode                  |                                         |  |  |  |  |  |  |
|      | 3.3      | Low power mode                   |                                         |  |  |  |  |  |  |
|      | 3.4      | Sleep to wake                    |                                         |  |  |  |  |  |  |
|      |          | 3.4.1                            | Entering the sleep to wake mode         |  |  |  |  |  |  |
|      |          | 3.4.2                            | Exiting the sleep to wake mode          |  |  |  |  |  |  |
| 4    | High     | ı pass fi                        | Iter                                    |  |  |  |  |  |  |
|      | 4.1      | Filter configuration             |                                         |  |  |  |  |  |  |
|      |          | 4.1.1                            | Normal mode                             |  |  |  |  |  |  |
|      |          | 4.1.2                            | Reference mode                          |  |  |  |  |  |  |
| 5    | Inter    | rupt ge                          | neration                                |  |  |  |  |  |  |
|      | 5.1      | Duration                         |                                         |  |  |  |  |  |  |
|      | 5.2      | Threshold                        |                                         |  |  |  |  |  |  |
|      | 5.3      | Free-fall and wake-up interrupts |                                         |  |  |  |  |  |  |
|      | 5.4      |                                  | <br>I wake-up                           |  |  |  |  |  |  |
|      | <b>.</b> | 5.4.1                            | HP filter bypassed                      |  |  |  |  |  |  |
|      |          | 5.4.2                            | Using the HP filter                     |  |  |  |  |  |  |
| 2/29 |          |                                  |                                         |  |  |  |  |  |  |

| AN2847 |      |                     | Contents |
|--------|------|---------------------|----------|
|        | 5.5  | Free-fall detection | 23       |
|        | 5.6  | 6D direction        | 24       |
| 6      | Revi | ision history       | 28       |

List of tables AN2847

## List of tables

| Table 1.  | Register table                                           | 6  |
|-----------|----------------------------------------------------------|----|
| Table 2.  | Output data rate                                         |    |
| Table 3.  | Timing value to prevent data loss                        |    |
| Table 4.  | Data signal on INT 1 and INT 2 pads                      | 10 |
| Table 5.  | Output data register content vs. acceleration (FS = 2 g) | 11 |
| Table 6.  | Power mode and low-power output data rate configurations | 12 |
| Table 7.  | CTRL_REG1 - data rate                                    |    |
| Table 8.  | CTRL_REG5 - sleep to wake configuration                  | 13 |
| Table 9.  | Power consumption - normal mode (µA)                     | 13 |
| Table 10. | Power consumption - low power mode (µA)                  | 13 |
| Table 11. | Turn on time                                             | 14 |
| Table 12. | High-pass filter mode configuration                      | 16 |
| Table 13. | High-pass filter cut-off frequency configuration         |    |
| Table 14. | Reference mode LSB value                                 | 17 |
| Table 15. | Interrupt mode configuration                             | 19 |
| Table 16. | Duration LSB value in normal mode                        | 19 |
| Table 17. | Duration LSB value in low power mode                     | 19 |
| Table 18. | Threshold LSB value                                      | 20 |
| Table 19. | INTx_SRC register in 6D position                         | 27 |
| Tahla 20  | Document revision history                                | 28 |

AN2847 List of figures

# **List of figures**

| Figure 1.  | Reading timing                                          | 9    |
|------------|---------------------------------------------------------|------|
| Figure 2.  | Interrupt and DataReady signal generation block diagram | . 10 |
| Figure 3.  | Data-ready signal                                       | . 10 |
| Figure 4.  | Sleep to wake mode                                      | . 15 |
| Figure 5.  | High pass filter connections block diagram              | . 16 |
| Figure 6.  | HP_FILTER_RESET readings                                | . 17 |
| Figure 7.  | Reference mode                                          | . 18 |
| Figure 8.  | Free-fall, wake-up interrupt generator                  | . 21 |
| Figure 9.  | FF_WU_CFG high and low                                  | . 21 |
| Figure 10. | Inertial wake-up interrupt                              | . 22 |
| Figure 11. | Free-fall interrupt                                     | . 24 |
| Figure 12. | ZH, ZL, YH, YL, XH, XL behavior                         | . 25 |
| Figure 13. | 6D movement vs. 6D position                             | . 26 |
| Figure 14. | 6D recognized positions                                 | . 26 |

57

Register table AN2847

# 1 Register table

Table 1. Register table

| Register name   | Address | Bit7  | Bit6  | Bit5 | Bit4   | Bit3   | Bit2  | Bit1    | Bit0    |
|-----------------|---------|-------|-------|------|--------|--------|-------|---------|---------|
| WHO_AM_I        | 0Fh     | 0     | 0     | 1    | 1      | 0      | 0     | 1       | 0       |
| CTRL_REG1       | 20h     | PM2   | PM1   | PM0  | DR1    | DR0    | Zen   | Yen     | Xen     |
| CTRL_REG2       | 21h     | воот  | HPM1  | HPM0 | FDS    | HPen2  | HPen1 | HPCF1   | HPCF0   |
| CTRL_REG3       | 22h     | IHL   | PP_OD | LIR2 | I2_CF1 | 12_CF0 | LIR1  | I1_CF1  | I1_CF0  |
| CTRL_REG4       | 23h     | BDU   | BLE   | FS1  | FS0    | STsign | 0     | ST      | SIM     |
| CTRL_REG5       | 24h     | -     | -     | -    | -      | -      | -     | TurnOn1 | TurnOn0 |
| HP_FILTER_RESET | 25h     | -     | -     | -    | -      | -      | -     | -       | -       |
| REFERENCE       | 26h     | REF7  | REF6  | REF5 | REF4   | REF3   | REF2  | REF1    | REF0    |
| STATUS_REG      | 27h     | ZYXOR | ZOR   | YOR  | XOR    | ZYXDA  | ZDA   | YDA     | XDA     |
| OUTX_L          | 28h     | XD7   | XD6   | XD5  | XD4    | XD3    | XD2   | XD1     | XD0     |
| OUTX_H          | 29h     | XD15  | XD14  | XD13 | XD12   | XD11   | XD10  | XD9     | XD8     |
| OUTY_L          | 2Ah     | YD7   | YD6   | YD5  | YD4    | YD3    | YD2   | YD1     | YD0     |
| OUTY_H          | 2Bh     | YD15  | YD14  | YD13 | YD12   | YD11   | YD10  | YD9     | YD8     |
| OUTZ_L          | 2Ch     | ZD7   | ZD6   | ZD5  | ZD4    | ZD3    | ZD2   | ZD1     | ZD0     |
| OUTZ_H          | 2Dh     | ZD15  | ZD14  | ZD13 | ZD12   | ZD11   | ZD10  | ZD9     | ZD8     |
| INT1_CFG        | 30h     | AOI   | 6D    | ZHIE | ZLIE   | YHIE   | YLIE  | XHIE    | XLIE    |
| INT1_SRC        | 31h     | -     | IA    | ZH   | ZL     | ΥH     | YL    | XH      | XL      |
| INT1_THS        | 32h     | 0     | THS6  | THS5 | THS4   | THS3   | THS2  | THS1    | THS0    |
| INT1_DURATION   | 33h     | 0     | D6    | D5   | D4     | D3     | D2    | D1      | D0      |
| INT2_CFG        | 34h     | AOI   | 6D    | ZHIE | ZLIE   | YHIE   | YLIE  | XHIE    | XLIE    |
| INT2_SRC        | 35h     | -     | IA    | ZH   | ZL     | YH     | YL    | XH      | XL      |
| INT2_THS        | 36h     | 0     | THS6  | THS5 | THS4   | THS3   | THS2  | THS1    | THS0    |
| INT2_DURATION   | 37h     | 0     | D6    | D5   | D4     | D3     | D2    | D1      | D0      |

AN2847 Start-up sequence

#### 2 Start-up sequence

Once the device is powered up it automatically downloads the calibration coefficients from the embedded Flash memory to the internal registers. When the boot procedure is complete (i.e. after about 5 milliseconds), the device automatically enters power-down mode.

To turn on the device and gather acceleration data, it is necessary to select one of the operating modes through the CTRL\_REG1 register, and to enable at least one of the axes. The following general-purpose sequence can be used to configure the device:

- 1. write CTRL\_REG1
- 2. write CTRL\_REG2
- 3. write CTRL\_REG3
- 4. write CTRL\_REG4
- 5. write Reference
- 6. write INT1\_THS
- 7. write INT1\_DUR
- 8. write INT2\_THS
- 9. write INT2\_DUR
- 10. read HP\_FILTER\_RESET (if filter is enabled)
- 11. write INT1\_CFG
- 12. write INT2\_CFG
- 13. write CTRL\_REG5

Register values can be changed at any time, and with the device in any operating mode. Modifications take effect immediately.

Note that in case of changes in full scale, ODR or enabling/disabling of self-test, the output of the device will require 1 ms + 1/ODR to settle (see *Table 11*). If the HP filter cut-off frequency is changed, the filter can be reset by reading the HP\_FILTER\_RESET register.

5/

Start-up sequence AN2847

#### 2.1 Reading acceleration data

#### 2.1.1 Using the status register

The device features a STATUS\_REG register which should be polled to check when a new set of data is available. The reading procedure is the following:

```
1
         read STATUS_REG
2
         if STATUS_REG(3) = 0 then goto 1
3
         if STATUS_REG(7) = 1 then some data have been overwritten
4
          read OUTX L
5
          read OUTX_H
6
          read OUTY L
7
          read OUTY_H
          read OUTZ L
8
9
          read OUTZ H
10
          data processing
11
         goto 1
```

The check performed at step 3 determines whether the reading rate is adequate compared to the data production rate. In cases where one or more acceleration samples have been overwritten by new data due to an excessively slow reading rate, the ZYXOR bit of the STATUS\_REG register is set to 1.

The overrun bits are automatically cleared when all the data present inside the device have been read and new data have not been produced in the meantime.

#### 2.1.2 Using the data-ready signal

The device may be configured to have one HW signal to determine when a new set of measurement data is available for reading. This signal is represented by the XYZDA bit of the STATUS\_REG register. The signal can be driven to the INT1 or INT2 pins and its polarity set to active-low or active-high through the CTRL\_REG3 register. The interrupt is reset when the higher part of the data of all the enabled channels has been read.

#### 2.1.3 Using the block data update feature

If the reading of the acceleration data is particularly slow and cannot be (or does not need to be) synchronized with either the XYZDA bit within the STATUS\_REG or with the RDY signal, it is strongly recommended to set the BDU (block data update) bit in CTRL\_REG4 to 1.

This feature prevents the need to read the values (most significant and least significant parts of the acceleration data) related to different samples. In particular, when the BDU is activated, the data registers related to each channel always contain the most recent acceleration data produced by the device. But if the reading of a given pair (i.e. OUTX\_H and OUTX\_L, OUTY\_H and OUTY\_L, OUTZ\_H and OUTZ\_L) is initiated, the refresh for that pair is blocked until both the MSB and LSB parts of the data are read.

AN2847 Start-up sequence

Note:

BDU only guarantees that OUTX(Y, Z)\_L and OUTX(X,Z)\_H have been sampled at the same moment. If the reading speed is too low, it is possible, for example, to read X and Y sampled at T1 and Z sampled at T2.

#### 2.2 Output data rate selection and reading timing

The output data rate is user selectable through the DRx bits of the CTRL\_REG1 (20h) register. At power-on-reset, the DRx are reset to 0, thus providing a default output data rate of 50 Hz.

The analog signal coming from the mechanical sensor is filtered by a low pass filter before being converted by the internal ADC. The frequency at -3 dB of the low pass filter determines the effective system resolution. The cut-off frequency depends on the DR<1:0> bits in the CTRL\_REG1 (20h) register (*Table 2*).

Table 2. Output data rate

| DR1, DR0 | Output data rate | Analog filter<br>cut-off frequency (-3 dB) |
|----------|------------------|--------------------------------------------|
| 00       | 50 Hz            | 37 Hz                                      |
| 01       | 100 Hz           | 74 Hz                                      |
| 10       | 400 Hz           | 292 Hz                                     |
| 11       | 1000 Hz          | 780 Hz                                     |

Note:

The output data rate precision is related to the internal oscillator; an error of +/- 10% should be taken into account.

A typical reading period is defined which is 616 µs shorter than the output data rate period, in order to prevent the loss of any data produced. During this time period the reading of the data must be performed and the DataReady signal can be used as a trigger to begin the reading sequence. At the end of the complete sequence, the DataReady signal goes down and the rising edge that follows signals that new data are available. If this minimum reading frequency is not observed, some data loss is possible and the DataReady signal is no longer considered a trigger signal. The status register can be used to infer the occurrence of an overrun.

Figure 1. Reading timing

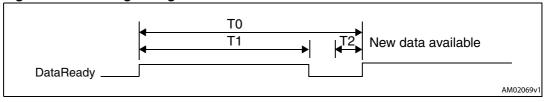
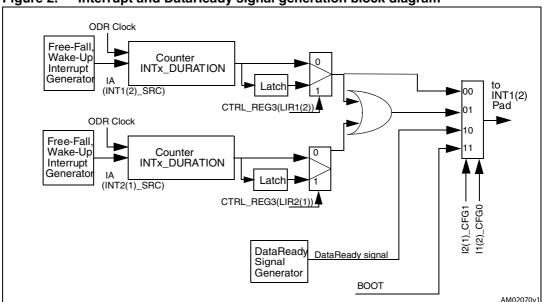



Table 3. Timing value to prevent data loss

| Time | Description         | Тур    |
|------|---------------------|--------|
| T0   | Data rate           | 1/ODR  |
| T1   | Reading period      | T0-T2  |
| T2   | New data generation | 616 µs |

Start-up sequence AN2847


#### 2.3 Data ready vs. interrupt signal

The device has two pins which can be activated to generate either the data-ready signal or the interrupt signal. The functionality of the pins is selected acting on bit I1(2)\_CFGx bits of the CTRL\_REG3 register, according to *Table 4* and the block diagram shown in *Figure 2*.

Table 4. Data signal on INT 1 and INT 2 pads

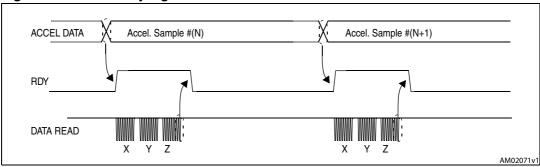

| l1(2)_CFG1 | I1(2)_CFG0 | INT 1(2) Pin                             |
|------------|------------|------------------------------------------|
| 0          | 0          | Interrupt 1 (2) source                   |
| 0          | 1          | Interrupt 1 source OR Interrupt 2 source |
| 1          | 0          | Data ready                               |
| 1          | 1          | Boot running                             |

Figure 2. Interrupt and DataReady signal generation block diagram



In particular, the data-ready (DR) signal rises to 1 when a new set of acceleration data has been generated and is available for reading. The signal is reset after all the enabled channels are read through the serial interface.

Figure 3. Data-ready signal



AN2847 Start-up sequence

#### 2.4 Understanding acceleration data

The measured acceleration data are sent to the OUTX\_H, OUTX\_L, OUTY\_H, OUTY\_L, OUTZ\_H and OUTZ\_L registers. These registers contain, respectively, the most significant part and the least significant part of the acceleration signals acting on the X, Y and Z axes.

The complete acceleration data for the X (Y, Z) channel is given by the concatenation OUTX\_H & OUTX\_L (OUTY\_H & OUTY\_L, OUTZ\_H & OUTZ\_L) and is expressed as a 2's complement number.

#### 2.4.1 Data alignment

Acceleration data are represented as 16-bit numbers and are left justified.

#### 2.4.2 Big-little endian selection

The LIS331DLH allows the swapping of the content of the lower and the upper part of the acceleration registers (i.e. OUTX\_H with OUTX\_L), to be compliant with both little-endian and big-endian data representations.

"Little endian" means that the low-order byte of the number is stored in memory at the lowest address, and the high-order byte at the highest address (the little end comes first). This mode corresponds to bit BLE in the CTRL\_REG4 reset to 0 -default configuration-.

Conversely, "big endian" means that the high-order byte of the number is stored in memory at the lowest address, and the low-order byte at the highest address.

#### 2.4.3 Example of acceleration data

The following table provides a few basic examples of the data that will be read in the data registers when the device is subject to a given acceleration. The values listed in the table are based on the assumption that the device is perfectly calibrated (i.e., no offset, no gain error, etc.) and show the effect of the BLE bit.

| Table 5. | Outnut data | register | content ve   | acceleration | (FS - 2) | a) |
|----------|-------------|----------|--------------|--------------|----------|----|
| Table 5. | Output uata | redister | COILLEIL VS. | acceleration | 1F3 = 2  | uı |

|                     | BLI              | E = 0 | BLE = 1 |     |  |  |
|---------------------|------------------|-------|---------|-----|--|--|
| Acceleration values | Register address |       |         |     |  |  |
|                     | 28h              | 29h   | 28h     | 29h |  |  |
| 0 g                 | 00h              | 00h   | 00h     | 00h |  |  |
| 350 mg              | 5Eh              | 01h   | 01h     | 5Eh |  |  |
| 1 g                 | 00h              | 04h   | 04h     | 00h |  |  |
| -350 mg             | 9Ah              | FEh   | FEh     | 9Ah |  |  |
| -1g                 | 00h              | FCh   | FCh     | 00h |  |  |

577

Operating modes AN2847

## 3 Operating modes

The LIS331DLH can operate in the following four modes, which can be selected through the configuration of CTR\_REG1 and CTRL\_REG5:

- Normal mode
- Power down
- Low power
- Sleep to wake

With reference to the datasheet of the device, the PowerMode (PM) and DataRate (DR) bits of CTRL\_REG1 register are used to select the basic operating modes (Power Down, Normal mode and Low Power). The TurnOn bits of the CTRL\_REG5 register are used to enable Sleep to Wake, which is an advanced mode involving the interrupt configuration also.

Note: The PMx bits are disabled if the TurnOnx bits of the CTRL\_REG5 are not configured as zeros.

Table 6. Power mode and low-power output data rate configurations

| PM2 | PM1 | РМО | Power mode selection | Output data rate [Hz]<br>ODR <sub>LP</sub> |
|-----|-----|-----|----------------------|--------------------------------------------|
| 0   | 0   | 0   | Power Down           |                                            |
| 0   | 0   | 1   | Normal mode          | ODR                                        |
| 0   | 1   | 0   | Low Power            | 0.5                                        |
| 0   | 1   | 1   | Low Power            | 1                                          |
| 1   | 0   | 0   | Low Power            | 2                                          |
| 1   | 0   | 1   | Low Power            | 5                                          |
| 1   | 1   | 0   | Low Power            | 10                                         |

Table 7. CTRL\_REG1 - data rate

| DR! | DR0 | Data rate generation [Hz] ODR |
|-----|-----|-------------------------------|
| 0   | 0   | 50                            |
| 0   | 1   | 100                           |
| 1   | 0   | 400                           |
| 1   | 1   | 1000                          |

AN2847 Operating modes

| TurnOn1 | TurnOn0 | Sleep to wake status                                                     |
|---------|---------|--------------------------------------------------------------------------|
| 0       | 0       | Sleep to wake function disabled                                          |
| 0       | 1       | An interrupt event has occurred and the system is generating data at ODR |
| 1       | 0       | Not allowed                                                              |
| 1       | 1       | Sleep to wake function enabled                                           |

Table 8. CTRL\_REG5 - sleep to wake configuration

*Table 9* and *Table 10* show the typical power consumption values for the different operating modes.

Note: Higher data rates correspond to lower device resolution.

Table 9. Power consumption - normal mode (μA)

| ODR               | 50 Hz | 100 Hz | 400 Hz | 1000 Hz |
|-------------------|-------|--------|--------|---------|
| Power consumption | 250   | 255    | 290    | 370     |

Table 10. Power consumption - low power mode ( $\mu$ A)

| ODR\ODR <sub>LP</sub> | 0.5 Hz | 1 Hz | 2 Hz | 5 Hz | 10 Hz |
|-----------------------|--------|------|------|------|-------|
| 50 Hz                 | 10     | 20   | 30   | 60   | 99    |
| 100 Hz                | 10     | 15   | 20   | 40   | 80    |
| 400 Hz                | 10     | 15   | 20   | 40   | 80    |
| 1000 Hz               | 5      | 10   | 15   | 30   | 60    |

#### 3.1 Normal mode

In Normal mode, data are generated at the data rate (ODR) selected through the DR bits and for the axis enabled through the Zen, Yen and Xen bits of the CTRL\_REG1 register. Data generated for a disabled axis is 00h.

Data interrupt generation is active and configured through the INT1\_CFG and INT2\_CFG registers.

#### 3.2 Power down mode

When the device is in Power Down mode, almost all internal blocks of the device are switched off to minimize power consumption. Digital interfaces (I<sup>2</sup>C and SPI) are still active to allow communication with the device. The content of the configuration register is preserved and output data registers are not updated, thus keeping in memory the last data sampled before going to Power Down mode.

Typical turn-on time to return to Normal mode is 1 ms + 1/ODR.

577

Operating modes AN2847

Table 11. Turn on time

| Data rate generation (Hz) | Turn on time - TYP (ms) |
|---------------------------|-------------------------|
| 50                        | 21                      |
| 100                       | 11                      |
| 400                       | 3.5                     |
| 1000                      | 2                       |

#### 3.3 Low power mode

When the device is in Low Power mode data are produced at the ODR<sub>LP</sub> selected by the PM bits of CTRL\_REG1.

Turn on time follows the same rules as for power down mode (Table 11).

#### 3.4 Sleep to wake

The sleep to wake function, in conjunction with Low Power mode, allows further reduction of system power consumption and the development of new smart applications. The LIS331DLH can be set in a low-power operating mode, characterized by lower date rate refreshments. In this way the device, even if "sleeping", continues sensing acceleration and generating interrupt requests.

When the sleep to wake function is activated, the LIS331DLH is able to automatically wake up as soon as the interrupt event has been detected, increasing the output data rate and bandwidth. With this feature the system can be efficiently switched from Low Power mode to full performance, depending on user-selectable positioning and acceleration events, thus ensuring power saving and flexibility.

The sleep to wake function is activated through TurnOnx bits of CTRL\_REG5 (Table 8).

When the device is in Sleep to Wake mode, it automatically samples the acceleration data at  $ODR_{LP}$  to verify if interrupt conditions are reached. When an interrupt event occurs, the device goes back to generate data at ODR (*Figure 4*). In case interrupt conditions are not reached, the device remains in Low Power mode at  $ODR_{LP}$ 

The device is ready to immediately generate valid samples as soon as it exits from Sleep to Wake mode.

Note:

When an interrupt event occurs, the content of CTR\_REG5 changes to 0x01 while the content of CTRL\_REG1 is left untouched. The PMx bits are ignored. To return to Normal Mode or Low Power mode, the TurnOnx bits of CTRL\_REG5 must be set to zero.

AN2847 Operating modes



Figure 4. Sleep to wake mode

#### 3.4.1 Entering the sleep to wake mode

Perform the following procedure to set up the Sleep to Wake function:

- 1. Configure the desired interrupt event (Free-fall, Wake-up, 6D position or 6D movement).
- 2. Select the desired low power mode (ODR<sub>IP</sub>) and Data Rate (ODR) in CTRL\_REG1.
- 3. Enable the sleep to wake mode through CTRL\_REG5 (TurnOn1 = TurnOn0 = 1).

Once an interrupt event occurs, the TurnOn bits change to TurnOn1 = 0 and TurnOn0 = 1 and the system generates data at ODR. The user can re-activate the Sleep to Wake function by executing step 3 again.

#### 3.4.2 Exiting the sleep to wake mode

To return to normal mode or to Low Power mode, the user must disable the sleep to wake function by setting TurnOn1 = TurnOn0 = 0.

577

High pass filter AN2847

## 4 High pass filter

The LIS331DLH provides embedded high-pass filtering capability to easily remove the DC component of the measured acceleration. As shown in *Figure 5*, it is possible to independently apply the filter on the output data and/or on the interrupts data through the FDS, HPen1 and HPen2 bits of the CTRL\_REG2 register configuration. This means that it is possible, for example, to obtain filtered data while interrupt generation works on unfiltered data.

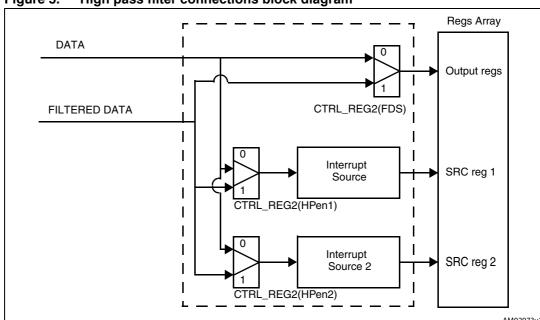



Figure 5. High pass filter connections block diagram

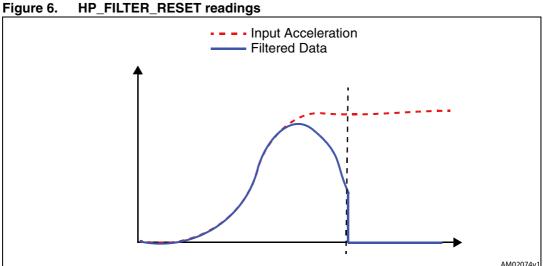
### 4.1 Filter configuration

As shown in *Table 12*, two operating modes are possible for the high-pass filter:

| · · · · · · · · · · · · · · · · · · · |      |                                             |  |
|---------------------------------------|------|---------------------------------------------|--|
| HPM1                                  | НРМ0 |                                             |  |
| 0                                     | 0    | Normal mode (reset reading HP_RESET_FILTER) |  |
| 0                                     | 1    | Reference mode                              |  |
| 1                                     | 0    | Same as configuration 00h                   |  |
| 1                                     | 1    | Not allowed                                 |  |

Table 12. High-pass filter mode configuration

The bandwidth of the high-pass filter depends on the selected ODR and on the settings of the HPCFx bits of CTRL\_REG2. The high-pass filter cut-off frequencies (f<sub>t</sub>) are shown in *Table 13*.


**AN2847** High pass filter

| Table 16. Thigh pass like out on hequency configuration |                                          |                                           |                                           |                                            |
|---------------------------------------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------------|
| HPcoeff2,1                                              | f <sub>t</sub> [Hz]<br>Data rate = 50 Hz | f <sub>t</sub> [Hz]<br>Data rate = 100 Hz | f <sub>t</sub> [Hz]<br>Data rate = 400 Hz | f <sub>t</sub> [Hz]<br>Data rate = 1000 Hz |
| 00                                                      | 1                                        | 2                                         | 8                                         | 20                                         |
| 01                                                      | 0.5                                      | 1                                         | 4                                         | 10                                         |
| 10                                                      | 0.25                                     | 0.5                                       | 2                                         | 5                                          |
| 11                                                      | 0.125                                    | 0.25                                      | 1                                         | 2.5                                        |

Table 13 High-pass filter cut-off frequency configuration

#### 4.1.1 **Normal mode**

In this configuration the high-pass filter can be reset by reading the HP\_FILTER\_RESET register, instantly matching the output data to the input acceleration.



#### 4.1.2 Reference mode

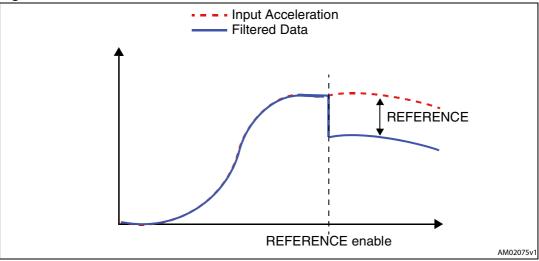

In Reference mode configuration the output data is calculated as the difference between the input acceleration and the content of the REFERENCE register. This register is in 2's complement representation and the value of 1LSB of these 7-bit registers depends on the selected full scale (Table 14).

Table 14. Reference mode LSB value

| Full scale | Reference mode LSB value (mg) |
|------------|-------------------------------|
| 2          | ~16                           |
| 4          | ~31                           |
| 8          | ~63                           |

High pass filter AN2847





AN2847 Interrupt generation

#### 5 Interrupt generation

The LIS331DLH can provide two interrupt signals and offers several possibilities for personalizing these signals. The registers involved in the interrupt generation behavior are CTRL\_REG3, INT1\_CFG, INT2\_CFG, INT1\_THS, INT2\_THS, INT1\_DURATION, and INT2\_DURATION.

The LIS331DLH interrupt signal can behave as Free-Fall, Wake-Up or 6D orientation detection.

AOI 6D Interrupt mode

0 0 OR combination of interrupt events

0 1 6 direction movement recognition

1 0 AND combination of interrupt events

1 1 6 direction position recognition

Table 15. Interrupt mode configuration

Whenever an interrupt condition is verified, the interrupt signal is generated and by reading the INT1\_SRC and INT2\_SRC registers it is possible to detect which condition has occurred.

#### 5.1 Duration

The content of the duration registers set the minimum duration of the interrupt event to be recognized. Duration steps and maximum values depend on the ODR chosen.

When in Normal mode, duration time is measured in N/ODR, where N is the content of the duration register and ODR is 50, 100, 400, 1000 Hz.

| ODR (Hz) | Duration LSB value (ms) |  |  |
|----------|-------------------------|--|--|
| 50       | 20                      |  |  |
| 100      | 10                      |  |  |
| 400      | 2.5                     |  |  |
| 1000     | 1                       |  |  |

Table 16. Duration LSB value in normal mode

When in low power mode, duration time is measured in N/ODR<sub>LP</sub> where N is the content of the duration register and ODR<sub>LP</sub> is 0.5, 1, 2, 5, 10 Hz.

Table 17. Duration LSB value in low power mode

| ODR (Hz) | Duration LSB value (s) |  |
|----------|------------------------|--|
| 0.5      | 2                      |  |
| 1        | 1                      |  |

Interrupt generation AN2847

| . , ,    |                        |  |
|----------|------------------------|--|
| ODR (Hz) | Duration LSB value (s) |  |
| 2        | 0.5                    |  |
| 5        | 0.2                    |  |
| 10       | 0.1                    |  |

Table 17. Duration LSB value in low power mode (continued)

#### 5.2 Threshold

Threshold registers define the reference accelerations used by the interrupt generation circuitry. The value of 1LSB of these 7-bit registers depends on the selected full scale (*Table 18*).

Table 18. Threshold LSB value

| Full scale | Threshold LSB value (mg) |
|------------|--------------------------|
| 2          | ~16                      |
| 4          | ~31                      |
| 8          | ~63                      |

#### 5.3 Free-fall and wake-up interrupts

The LIS331DLH interrupt signals can behave as free-fall, wake-up or 6D orientation detection. When an interrupt condition is verified, the interrupt signal is generated and by reading the INT1\_SRC and INT2\_SRC registers it is possible to determine which condition has occurred.

The Free-Fall signal (FF) and Wake-Up signal (WU) interrupt generation block is represented in *Figure 8*.

FF or WU interrupt generation is selected through the AOI bit in INTx\_CFG register. If the AOI bit is '0', signals coming from comparators are put in logical "OR". Depending on the values written in the INT1\_CFG register, every time the value of at least one of the enabled axes exceeds the threshold written in module in INTx\_THS registers, a WU interrupt is generated. Otherwise, if the AOI bit is '1', signals coming from the comparators go into a "NAND" port. In this case, an interrupt signal is generated only if all the enabled axes exceed the threshold written in the INTx\_THS register.

The LIRx bits of the CTRL\_REG3 can be used to determine whether or not the interrupt request must be latched. If the LIRx bit is '0' (default value), the interrupt signal goes high when the interrupt condition is satisfied and immediately returns low if the interrupt condition is no longer verified. Otherwise, if the LIRx bit is '1', when an interrupt condition is applied, the interrupt signal remains high even if the condition returns to a non-interrupt status, until a reading of the INTx\_SRC register is performed.

The ZHIE, ZLIE, YHIE, YLIE, XHIE and HLIE bits of the INTx\_CFG register select on which axis the interrupt decision must be performed, and in which direction the threshold must be exceeded to generate the interrupt request.

AN2847 Interrupt generation

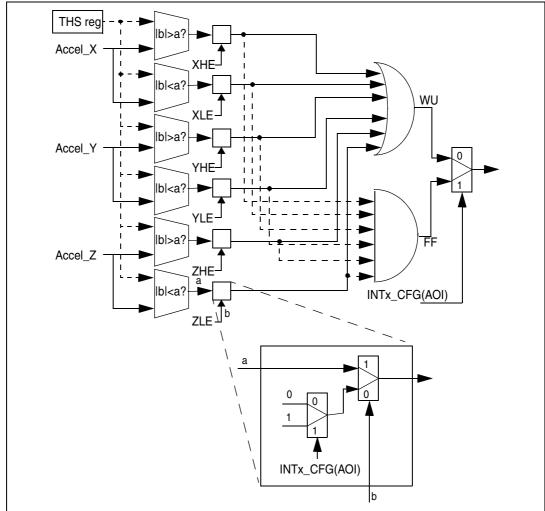
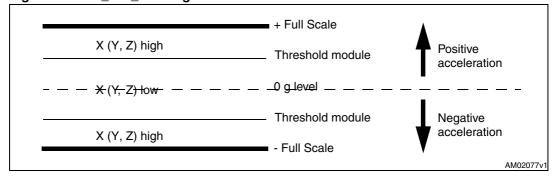
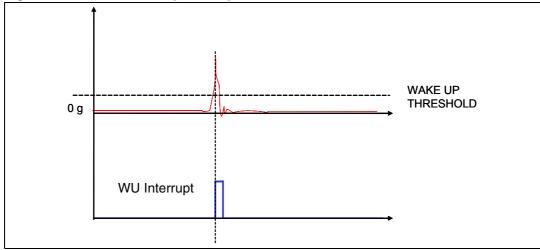




Figure 8. Free-fall, wake-up interrupt generator

The threshold module which is used by the system to detect free-fall or inertial wake-up events is defined by the INTx\_THS registers. The threshold value is expressed over 7 bits as an unsigned number and is symmetrical around the zero-g level. XH (YH, ZH) is true when the unsigned acceleration value of the X (Y, Z) channel is higher than INTx\_THS. Similarly, XL, (YL, ZL) low is true when the unsigned acceleration value of the X (Y, Z) channel is lower than INTx\_THS. Refer to *Figure 9* for additional details.




Interrupt generation AN2847

#### 5.4 Inertial wake-up

The wake-up interrupt refers to a specific configuration of the INTx\_CTRL registers that allow the interrupt generation when the acceleration on the configured axis exceeds a defined threshold (*Figure 10*).





#### 5.4.1 HP filter bypassed

This paragraph provides a basic algorithm which shows the practical use of the inertial wake-up feature. In particular, with the code below, the device is configured to recognize when the absolute acceleration along either X or Y axis exceeds a preset threshold (250 mg used in the example). The event which triggers the interrupt is latched inside the device and its occurrence is signaled through the usage of the INT1 pin.

```
// Turn on the sensor and enable X, Y and Z
1
        write 2Fh into CTRL REG1
                                                 // ODR = 100 Hz
2
                                                 // High pass filter disabled
        write 00h into CTRL_REG2
        write 00h into CTRL_REG3
                                                 // Latched interrupt active high on INT1 pad
3
4
        write 00h into CTRL_REG4
                                                 // FS = 2 g
5
        write 00h into CTRL_REG5
                                                 // Sleep to Wake disabled
6
        write10h into INT1_THS
                                                 // Threshold = 250 mg
7
        write 00h into INT1_DURATION
                                                 // Duration = 0
8
        write 0Ah into INT1_CFG
                                                 // Enable XH and YH interrupt generation
                                                 // Poll RDY/INT pin waiting for the
9
        poll INT1 pad; if INT1=0 then goto 8
                                                 // wake-up event
                                                 // Return the event that has triggered the
10
        read INT1_SRC
                                                 // interrupt
        (Wake-up event has occurred; insert
11
                                                 // Event handling
        your code here)
12
        goto 8
```

AN2847 Interrupt generation

#### 5.4.2 Using the HP filter

The code which follows provides a basic routine showing the practical use of the inertial wake-up feature performed on high-pass filtered data. In particular, the device is configured to recognize when the high-frequency component of the acceleration applied along either the X, Y or Z axis exceeds a preset threshold (250 mg is used in the example). The event which triggers the interrupt is latched inside the device and its occurrence is signalled through the INT1 pin.

```
// Turn on the sensor, enable X, Y and Z
1
        write 2Fh into CTRL_REG1
                                                  // ODR = 100 Hz
2
        write 15h into CTRL_REG2
                                                  // High pass filter enabled on data and interrupt1
3
        write 00h into CTRL_REG3
                                                  // Latched interrupt active high on INT1 pad
4
        write 00h into CTRL REG4
                                                  // FS = 2 q
5
        write 00h into CTRL_REG5
                                                  // Sleep to Wake disabled
6
        write10h into INT1 THS
                                                  // Threshold = 250 mg
                                                  // Duration = 0
7
        write 00h into INT1_DURATION
                                                  // Dummy read to force the HP filter to
8
        read HP_FILTER_RESET
                                                  // actual acceleration value
                                                  // (i.e. set reference acceleration/tilt value)
9
        write 2Ah into INT1_CFG
                                                  // Configure desired wake-up event
                                                  // Poll INT1 pin waiting for the
10
        poll INT1 pad; if INT1 = 0 then goto 9
                                                  // wake-up event
        (Wake-up event has occurred; insert
11
                                                 // Event handling
        your code here)
                                                  // Return the event that has triggered the
12
        read INT1_SRC
                                                  // interrupt and clear interrupt
13
        (Insert your code here)
                                                  // Event handling
14
        goto 9
```

At step 8, a dummy read at the HP\_FILTER\_RESET register is performed to set the current/reference acceleration/tilt state against which the device performed the threshold comparison.

This read may be performed any time it is required to set the orientation/tilt of the device as a reference state without waiting for the filter to settle.

#### 5.5 Free-fall detection

Free-fall detection refers to a specific configuration of the INTx\_CTRL registers that allows the recognition of device free-fall: the acceleration measurements along all the axes go to zero. In real cases, a "free-fall zone" is defined around the zero-g level, where all accelerations are small enough to generate the interrupt (*Figure 11*).

23/29

Interrupt generation AN2847

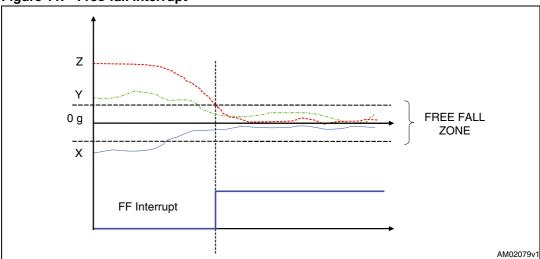



Figure 11. Free-fall interrupt

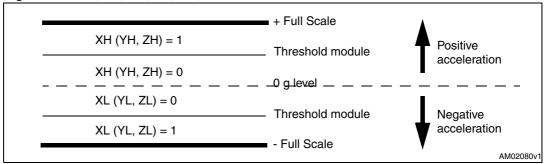
This paragraph provides the fundamentals for using the free-fall detection feature. In particular, the software routine which configures the device to detect and signal free-fall events is as follows:

| 1  | write 2Fh into CTRL_REG1                              | // Turn on the sensor, enable X, Y and Z<br>// ODR = 100 Hz |
|----|-------------------------------------------------------|-------------------------------------------------------------|
| 2  | write 00h into CTRL_REG2                              | // High pass filter disabled                                |
| 3  | write 04h into CTRL_REG3                              | // Latched interrupt on INT1                                |
| 4  | write 16h into INT1_THS                               | // Set free-fall threshold = 350mg                          |
| 5  | write 03h into INT1_DURATION                          | // Set minimum event duration                               |
| 6  | write 95h into INT1_CFG                               | // Configure free-fall recognition                          |
| 7  | poll INT1 pad; if INT1 = 0 then goto 8                | $/\!/$ Poll INT1 pin waiting for the free-fall event        |
| 8  | (Free-fall event has occurred; insert your code here) | // Event handling                                           |
| 9  | read INT1_SRC register                                | // Clear interrupt request                                  |
| 10 | goto 7                                                |                                                             |

The code sample exploits a threshold set at 350 mg for free-fall recognition and the event is notified by the hardware signal INT1. At step 5, the INT1\_DURATION register is configured to ignore events that are shorter than  $3/DR = 3/100 \sim 30$  ms in order to avoid false detections.

Once the free-fall event has occurred, a read at the INT1\_SRC register clears the request and the device is ready to recognize other events.

#### 5.6 6D direction


The LIS331DLH features an advanced capability to detect the orientation of the device in space. The 6D direction function can be enabled through the AOI and 6D bits of the INT1\_CFG register (*Table 3*). When configured for the 6D function, the ZH, ZL, YH, YL, XH,

AN2847 Interrupt generation

XL bits of INTx\_SRC send information about the value of the acceleration generating the interrupt when it exceeds the threshold, and whether the acceleration value is positive or negative. More specifically:

- ZH (YH, XH) is 1 when the sensed acceleration is greater than the threshold in the positive direction.
- ZL, (YL, XL) is 1 when the sensed acceleration is greater than the threshold in the negative direction.

Figure 12. ZH, ZL, YH, YL, XH, XL behavior



There are two possible configurations for the 6D direction function:

- **6D movement recognition**: In this configuration the interrupt is generated when the device moves from one direction (known or unknown) to a different, known direction. The interrupt is active only for 1/ODR.
- **6D position recognition**: In this configuration the interrupt is generated when the device is stable in a known direction. The interrupt is active as long as the position is maintained, as shown in *Figure 13*, (a) and (b).

In *Figure 13*, the 6D Movement line shows the behavior of the interrupt when the device is configured for 6D Movement recognition on the X and Y axes (INT1\_CFG = 0x4Ah), while the 6D Position line shows the behavior of the interrupt when the device is configured for 6D Position recognition on the X and Y axes (INT1\_CFG = 0xCAh). INT1\_THS is set to 0x21.

With reference to *Figure 14*, the device has been configured for the 6D Position function on the X, Y and Z axes. *Table 19* shows the content of the INT1\_SRC register for each position.

25/29

Interrupt generation AN2847

Figure 13. 6D movement vs. 6D position

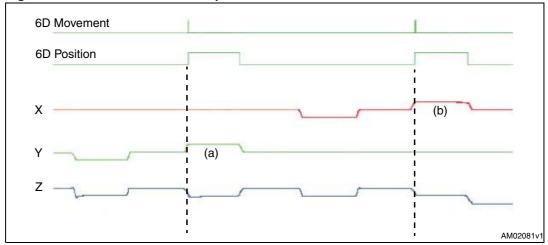
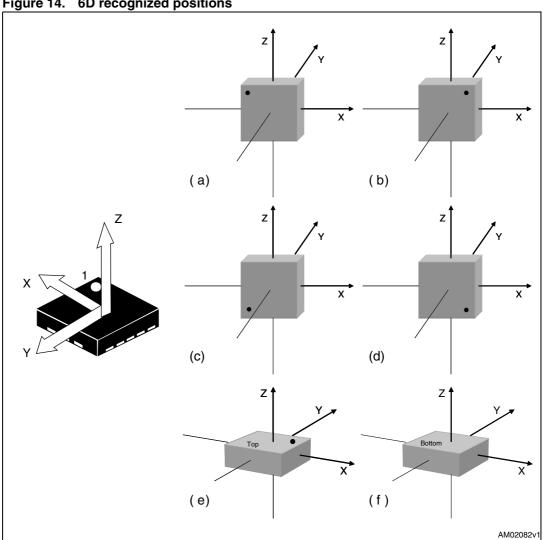




Figure 14. 6D recognized positions



AN2847 Interrupt generation

Table 19. INTx\_SRC register in 6D position

| Case | IA | ZH | ZL | YH | YL | хн | XL |
|------|----|----|----|----|----|----|----|
| (a)  | 1  | 0  | 0  | 0  | 1  | 0  | 0  |
| (b)  | 1  | 0  | 0  | 0  | 0  | 1  | 0  |
| (c)  | 1  | 0  | 0  | 0  | 0  | 0  | 1  |
| (d)  | 1  | 0  | 0  | 1  | 0  | 0  | 0  |
| (e)  | 1  | 1  | 0  | 0  | 0  | 0  | 0  |
| (f)  | 1  | 0  | 1  | 0  | 0  | 0  | 0  |

Revision history AN2847

# 6 Revision history

Table 20. Document revision history

| Date        | Revision | Changes          |
|-------------|----------|------------------|
| 26-Jan-2009 | 1        | Initial release. |

#### Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

