

www.ti.com

256-TAPS DUAL CHANNEL DIGITAL POTENTIOMETER WITH SPI INTERFACE AND NON-VOLATILE MEMORY

Check for Samples: TPL0202

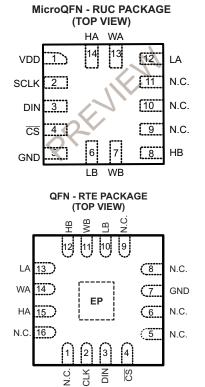
FEATURES

- Dual Channel, 256-Position Resolution
- Non-volatile Memory Stores Wiper Settings
- 2mm x 2mm, 14-pin MicroQFN or 3mm x 3mm, 16-pin QFN Packages
- 10 kΩ End-to-End Resistance (TPL0202-10)
- Fast Power-up Response Time: <100µs
- ±1 LSB INL, ±0.5 LSB DNL (Voltage-Divider Mode)
- 12 ppm/°C Ratiometric Temperature Coefficient
- SPI-Compatible Serial Interface
- 2.7 V to 5.5 V Single-Supply Operation
- Operating Temperature Range From -40°C to +85°C
- ESD Performance Tested Per JESD 22
 - 2000-V Human Body Model (A114-B, Class II)

APPLICATIONS

- Adjustable Gain Amplifiers and Offset Trimming
- Adjustable Power Supplies
- Precision Calibration of Set Point Thresholds
- Sensor Trimming and Calibration
- Mechanical Potentiometer Replacement

DESCRIPTION


The TPL0202 is a two channel, linear-taper digital potentiometer with 256 wiper positions. Each potentiometer can be used as a three-terminal potentiometer or as a two-terminal rheostat. The TPL0202-10 has an end-to-end resistance of $10k\Omega$.

The TPL0202 has non-volatile memory (EEPROM) which can be used to store the wiper position. The internal registers of the TPL0202 can be accessed using a SPI-compatible digital interface.

The TPL0202 is available in a 14-pin MicroQFN (2mm x 2mm) and 16-pin QFN (3mm x 3mm) package with a specified temperature range of -40°C to +85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

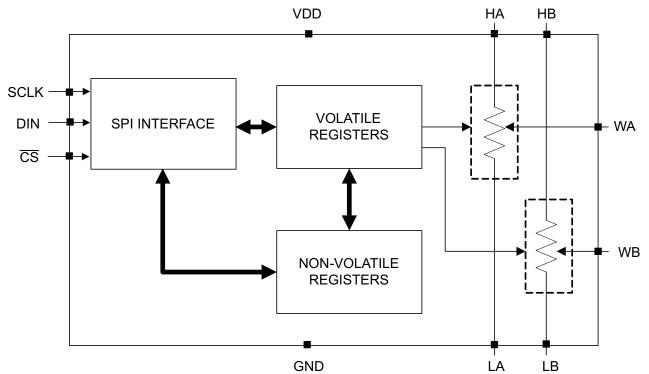
www.ti.com

ISTRUMENTS

EXAS

ORDERING INFORMATION

T _A	PACKA	GE ⁽¹⁾ ⁽²⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING
–40°C to 85°C	QFN – RTE	Tono and real	TPL0202-10MRTER	ZUR
	QFN – RUC	Tape and reel	TPL0202-10RUCR	TBD

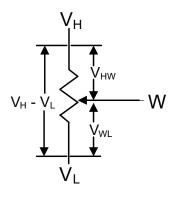

(1)

Package drawings, thermal data, and symbolization are available at www.ti.com/packaging. For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI (2) website at www.ti.com.

Feature	TPL0202-10
# of Potentiometers	2
Digital Interface	SPI
Steps	256
Wiper Memory	Non-Volatile
Taper	Linear
End-to-end Resistance	10kΩ
End-to-end Resistance Tolerance	20%
Wiper Resistance	25 Ω (typ)
Smallest Package Size	MicroQFN (RUC): 4 mm ²

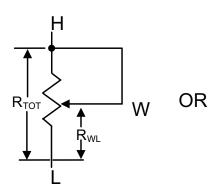
Table 1. Summary of Features

2


www.ti.com

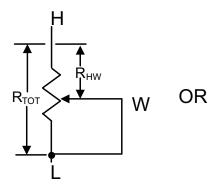
TPL0202

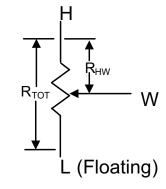
SLIS135A - DECEMBER 2010 - REVISED JANUARY 2011


DIGITAL POTENTIOMETER CONFIGURATIONS


VOLTAGE DIVIDER MODE

$$\begin{split} V_{HW} &= (V_H - V_L) \ x \ (1 - (D/256)) \\ V_{WL} &= (V_H - V_L) \ x \ D/256 \\ \end{split}$$
 Where D = Decimal Value of Wiper Code


RHEOSTAT MODE A



 $R_{WL} = R_{TOT} \times D/256$ Where D = Decimal Value of Wiper Code

RHEOSTAT MODE B

 $R_{HW} = R_{TOT} \times (1 - (D/256))$ Where D = Decimal Value of Wiper Code

Figure 1. DPOT Configurations

www.ti.com

[Die Z. PIN DES		
16 RTE	14 RUC	PIN NAME	TYPE	DESCRIPTION
1	1	VDD	Power	Supply Voltage
2	2	SCLK	Input	SPI Clock
3	3	DIN	Input	SPI Input
4	4	CS	Input	SPI Chip Select (Active Low)
5	9	N.C.	-	Not internally connected
6	10	N.C.	-	Not internally connected
7	5	GND	Ground	Ground
8	-	N.C.	-	Not internally connected
9	11	N.C.	-	Not internally connected
10	6	LB	I/O	Low terminal of Potentiometer B
11	7	WB	I/O	Wiper terminal of Potentiometer B
12	8	НВ	I/O	High terminal of Potentiometer B
13	12	LA	I/O	Low terminal of Potentiometer A
14	13	WA	I/O	Wiper terminal of Potentiometer A
15	14	HA	I/O	High terminal of Potentiometer A
16	-	N.C	-	Not internally connected
EP	-	EP	-	Exposed Thermal Pad. Can be connected to GND or left unconnected.

Table 2. PIN DESCRIPTION TABLE

www.ti.com

ABSOLUTE MAXIMUM RATINGS⁽¹⁾⁽²⁾⁽³⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{DD} to GND			-0.3	7	V
All other pins to GND	Supply voltage range		-0.3	V _{DD} + 0.3	
IL.	Pulse Current			±20	mA
I _W I _H	Continuous Current	TPL0202-10		±2	mA
θ_{JA}	Package Thermal Impedance ⁽⁴⁾	RTE package		56.4	°C/W
	Package memai impedance	RUC package		216.7	0/00
T _{stg}	Storage temperature range		-65	150	°C

(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

(2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.
(3) All voltages are with respect to ground, unless otherwise specified.

(4) The package thermal impedance is calculated in accordance with JESD 51-7.

www.ti.com

ELECTRICAL CHARACTERISTICS

V_{DD} = 2.7V to 5.5V, T_A=-40°C to 85°C (unless otherwise noted). Typical values are at V_{DD}=5V, T_A=25°C (unless otherwise noted).

P	ARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
R _{TOT}	End-to-end Resistance (Between H and L Terminals)		8	10	12	kΩ
V _H , V _L	Terminal voltage range		0		V_{DD}	V
R _H , R _L	Terminal resistance			60	200	Ω
R _W	Wiper resistance			25	100	Ω
C _H , C _L ⁽¹⁾⁽²⁾	Terminal capacitance			22		pF
C _W ⁽¹⁾⁽²⁾	Wiper capacitance			18		pF
I _{LKG}	Terminal Leakage Current	$V_{H} = V_{SS}$ to V_{DD} , V_{L} = Floating OR $V_{L} = V_{SS}$ to V_{DD} , V_{H} = Floating		0.1	1	μA
TC _R	Resistance temperature coefficient	Input Code = 0x80h		132		ppm/°C
R _{TOT,MATCH}	Channel-to-channel resistance match			0.1		%
Voltage Divide	er Mode					
INL ⁽³⁾⁽⁴⁾	Integral non-linearity		-1		1	LSB
DNL ⁽³⁾⁽⁵⁾	Differential non-linearity		-0.5		0.5	LSB
ZS _{ERROR} ⁽⁶⁾⁽⁷⁾	Zero-scale error		0	2	5	LSB
FS _{ERROR} ⁽⁶⁾⁽⁸⁾	Full-scale error		-5	-2	0	LSB
V _{MATCH} ⁽⁶⁾⁽⁹⁾	Channel-to-Channel matching	Wiper at the same tap position, same voltage all H and the same voltage at all L terminals	-2		2	LSB
TC _V	Ratiometric temperature coefficient	Wiper set at mid-scale		12		ppm/°C
BW	Bandwidth	Wiper set at mid-scale C _{LOAD} = 10 pF		2000		kHz
T _{SW}	Wiper setting time			0.4		μS
THD	Total harmonic distortion	$V_{H} = 1 V_{RMS} at 1 kHz,$ $V_{L} = V_{DD}/2,$ Measurement at W		0.03		%
X _{TALK}	Crosstalk	$f_H = 1 \text{ kHz},$ V _L = GND, Measurement at W		-94		dB

(1) Terminal and Wiper Capacitance extracted from self admittance of three port network measurement

$$\mathsf{Y}_{\mathsf{i}\mathsf{i}} = \frac{\mathsf{I}_{\mathsf{i}}}{\mathsf{V}_{\mathsf{i}}} \Big|_{\mathsf{V}_{\mathsf{k}} = 0 \text{ for } \mathsf{k} \neq \mathsf{i}}$$

Digital Potentiometer Macromodel (2)

- (3) LSB = (V_{MEAS[code 255]} V_{MEAS[code 0]}) / 255
 (4) INL = ((V_{MEAS[code x]} V_{MEAS[code 0]}) / LSB) [code x]
 (5) DNL = ((V_{MEAS[code x]} V_{MEAS[code x-1]}) / LSB) 1
 (6) IDEAL_LSB = (V_H-V_L) / 256
 (7) ZS

- (7)
- (8)
- $$\begin{split} & \text{IDEAL_LOB} = V_{\text{MEAS}[code \ 0]} / \text{IDEAL}_\text{LSB} \\ & \text{FS}_{\text{ERROR}} = \left[(V_{\text{MEAS}[code \ 255]} (V_{\text{H}} \cdot V_{\text{L}})) / \text{IDEAL}_\text{LSB} \right] + 1 \\ & V_{\text{MATCH}} = (V_{\text{MEAS}} \cdot A[code \ x] V_{\text{MEAS}} \cdot B[code \ x]) / \text{IDEAL}_\text{LSB} \end{split}$$
 (9)

www.ti.com

ELECTRICAL CHARACTERISTICS (continued)

V_{DD} = 2.7V to 5.5V, T_A=-40°C to 85°C (unless otherwise noted). Typical values are at V_{DD}=5V, T_A=25°C (unless otherwise noted).

P/	ARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
RHEOSTAT MO	DDE (Measurements betw	veen W and L with H not connected, or between W and	H with L no	ot connec	ted)	
RINL (10)(11)	Integral non-linearity		-1.5		1.5	LSB
RDNL ⁽¹⁰⁾⁽¹²⁾	Differential non-linearity		-0.5		0.5	LSB
R _{OFFSET} ⁽¹³⁾⁽¹⁴⁾	Offset		0	2.5	7	LSB
R _{MATCH} ⁽¹³⁾⁽¹⁵⁾	Channel-to-Channel matching		-2		2	LSB
RBW	Bandwidth	Code = 0x00h, L Floating, Input applied to W, Measure at H, C _{LOAD} = 10 pF		400		kHz

(10) RLSB = $(R_{MEAS[code 255]} - R_{MEAS[code 0]}) / 255$ (11) RINL = $((R_{MEAS[code x]} - R_{MEAS[code 0]}) / RLSB) - [code x]$ (12) RDNL = $((R_{MEAS[code x]} - R_{MEAS[code x-1]}) / RLSB) - 1$ (13) IDEAL_RLSB = $R_{TOT} / 256$ (14) Reserve = Rustact of (IDEAL RLSB)

(14) R_{OFFSET} = R_{MEAS[code 0]} / IDEAL_RLSB
 (15) R_{MATCH} = (R_{MEAS_A[code x]} - R_{MEAS_B[code x]}) / IDEAL_RLSB

OPERATING CHARACTERISTICS

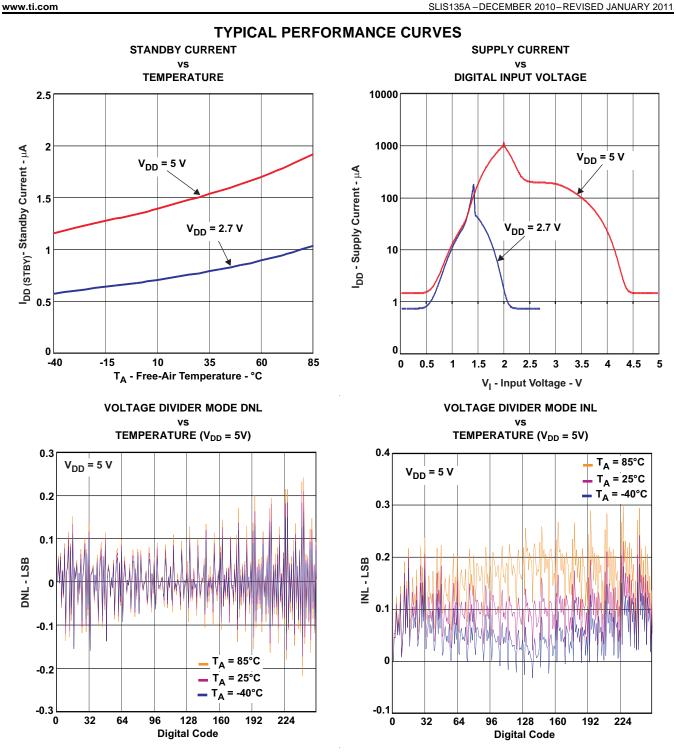
V_{DD} = 2.7V to 5.5V, V_H= V_{DD}, V_L= GND, T_A= -40°C to 85°C (unless otherwise noted). Typical values are at V_{DD}= 5V, T_A= 25°C (unless otherwise noted).

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
I _{DD(STBY)}	V _{DD} supply current during standby	Digital Inputs = V _{DD} or GND		1	5	μA
I _{DD}	V _{DD} supply current during write cycle only	Digital Inputs = V _{DD} or GND			400	μA
I _{IN-DIG}	Digital pins leakage current (SCLK, DIN, CS inputs)		-1		1	μA
V _{POR}	Power-on recall voltage	Minimum V _{DD} at which memory recall occurs		2		V
EEPROM Sp	pecification					
	EEPROM endurance			100,000		Cycles
	EEPROM retention	T _A = 85 °C		100		Years
t _{BUSY}	Write NV register busy time			20		ms
t _{ACC}	Read NV register access time			40		ns
t _{WO}	Write wiper register to output delay			40		ns
t _D	Power-up Response Time (V_{DD} above V_{POR} to wiper register value recall completed)			35	100	μs
Serial Interfa	ace Specifications (SCLK, DIN, CS Inp	uts)	-			
V _{IH}	Input high voltage	V _{DD} = 3.6 V to 5.5 V	2.4		5.5	M
		V _{DD} = 2.7 V to 3.6 V	0.7 × V _{DD}		5.5	V
VIL	Input low voltage	SCLK, DIN, CS inputs	0		0.8	V
CIN	Pin capacitance	SCLK, DIN, CS inputs		7		pF

www.ti.com

STRUMENTS

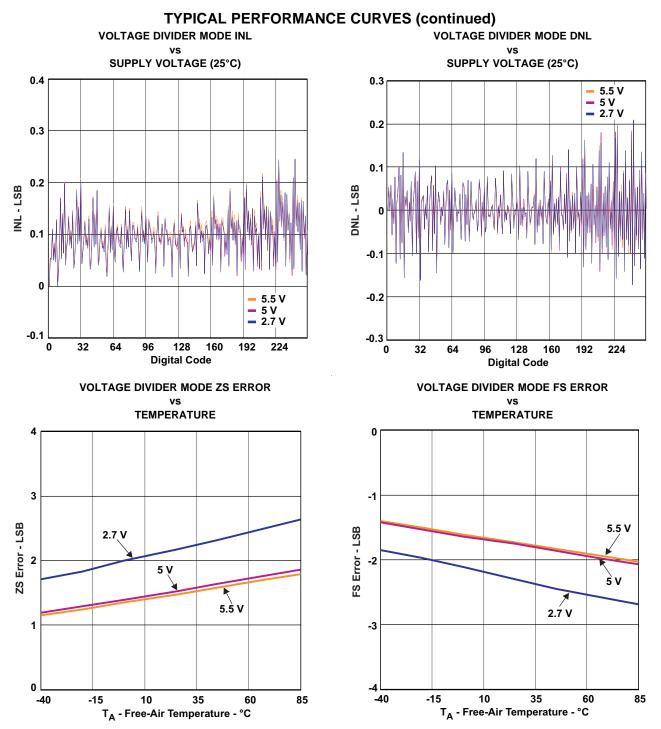
TEXAS

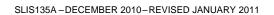

SPI INTERFACE TIMING REQUIREMENTS

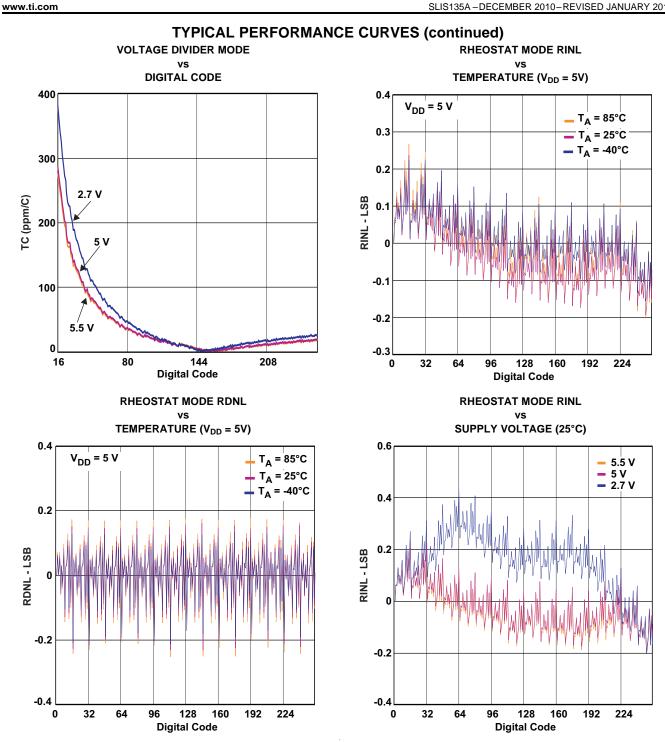
 V_{DD} = 2.7V to 5.5V, V_{H} = V_{DD} , V_{L} = GND, T_{A} = -40°C to 85°C (unless otherwise noted)

		MIN	TYP		UNNIATX
f _{SCLK}	SLCK frequency		5	MHz	
t _{SCP}	SCLK period	200		ns	
t _{SCH}	SCLK high time	80		ns	
t _{SCL}	SCLK low time	80		ns	
t _{CSS}	CS fall to SCLK rise setup time	80		ns	
t _{CSH}	SCLK rise to \overline{CS} hold time	0		ns	
t _{DS}	DIN to SCLK setup time	50		ns	
t _{DH}	DIN hold after SCLK rise to \overline{CS} fall	0		ns	
t _{CS0}	SCLK rise to CS fall	20		ns	
t _{CS1}	CS rise to SCLK rise hold	80		ns	
t _{CSW}	CS pulse width high	200		ns	

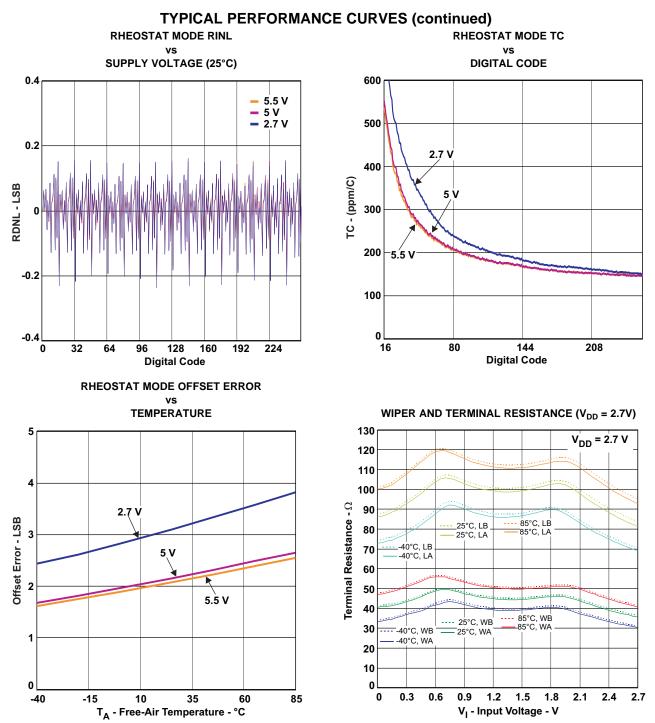
8

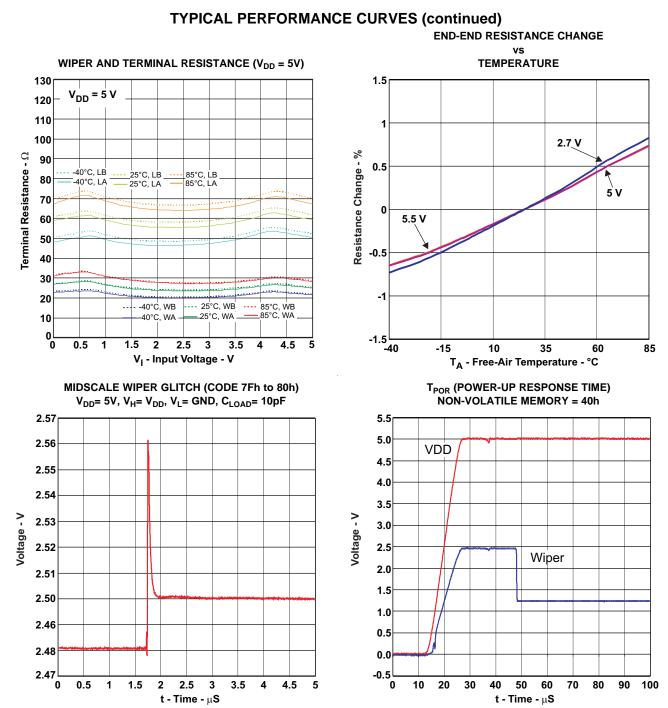



Texas Instruments


www.ti.com

SLIS135A - DECEMBER 2010 - REVISED JANUARY 2011




Texas Instruments

www.ti.com

SLIS135A – DECEMBER 2010 – REVISED JANUARY 2011

www.ti.com

XAS

ISTRUMENTS

www.ti.com

SPI DIGITAL INTERFACE

The TPL0202 uses a 3-wire SPI-compatible serial data interface. This write-only interface has three inputs: chip-select (CS), data clock (SCLK), and data input (DIN). Drive CS low to enable the serial interface and clock data synchronously into the shift register on each SCLK rising edge. The WRITE commands (C1, C0 = 00 or 01) require 16 clock cycles to clock in the command, address, and data. The COPY commands (C1, C0 = 10 or 11) can use either eight clock cycles to transfer only command and address bits or 16 clock cycles, with the device disregarding 8 data bits. After loading data into the shift register, drive CS high to latch the data into the appropriate potentiometer control register and disable the serial interface. Keep CS low during the entire serial data stream to avoid corruption of the data.

Register Map

CLOCK EDGE	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	I	-	C1	C0	-	-	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0
Write Wiper Register A	0	0	0	0	0	0	0	1	D7	D6	D5	D4	D3	D2	D1	D0
Write Wiper Register B	0	0	0	0	0	0	1	0	D7	D6	D5	D4	D3	D2	D1	D0
Write Wiper Register A and B	0	0	0	0	0	0	1	1	D7	D6	D5	D4	D3	D2	D1	D0
Write NV Register A	0	0	0	1	0	0	0	1	D7	D6	D5	D4	D3	D2	D1	D0
Write NV Register B	0	0	0	1	0	0	1	0	D7	D6	D5	D4	D3	D2	D1	D0
Write NV Register A and B	0	0	0	1	0	0	1	1	D7	D6	D5	D4	D3	D2	D1	D0
Copy Wiper Register A to NV Register A	0	0	1	0	0	0	0	1	-	_	_	-	_	_	_	_
Copy Wiper Register B to NV Register B	0	0	1	0	0	0	1	0	_	_	_	_	_	_	_	_
Copy Both Wiper Registers to NV Registers	0	0	1	0	0	0	1	1	_	_	_	-	_	_	_	_
Copy NV Register A to Wiper Register A	0	0	1	1	0	0	0	1	_	_	_	_	_	_	_	_
Copy NV Register B to Wiper Register A	0	0	1	1	0	0	1	0	_	-	-	-	_	_	-	_
Copy Both NV Registers to Wiper Registers	0	0	1	1	0	0	1	1	_	_	_	_	_	_	_	_

Digital Interface Format

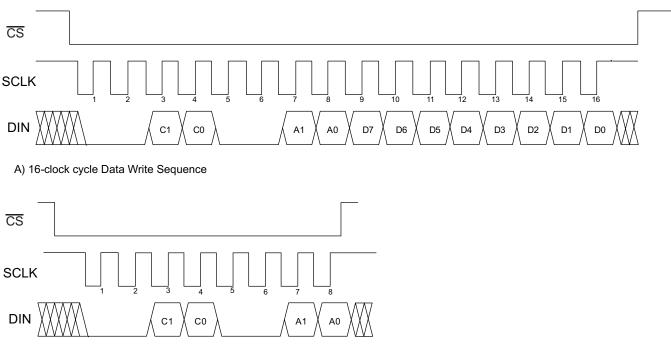
The data format consists of three elements: command bits, address bits, and data bits. The command bits (C1 and C0) indicate the action to be taken such as changing or storing the wiper position. The address bits (A1 and A0) specify which potentiometer the command affects and the 8 data bits (D7 to D0) specify the wiper position.

www.ti.com

Write-Wiper Register (Command 00)

Data written to the write-wiper registers (C1, C0 = 00) controls the wiper positions. The 8 data bits (D7 to D0) indicate the position of the wiper. If DIN = 0x00h, the wiper moves to the position closest to the L terminal. If DIN=0xFFh, the wiper moves to the position closest to the H terminal. This command writes data to the volatile RAM, leaving the NV registers unchanged. When the device powers up, the data stored in the NV registers transfers to the volatile wiper register, moving the wiper to the stored position

Write-NV Register (Command 01)


This command (C1, C0 = 01) stores the position of the wipers to the NV registers for use at power-up. Alternatively, the "copy wiper register to NV register" command can be used to store the position of the wipers to the NV registers. Writing to the NV registers does not affect the position of the wipers.

Copy Wiper Register to NV Register (Command 10)

This command (C1, C0 = 10) stores the current position of the wiper to the NV register, for use at power-up. This command may affect one potentiometer at a time, or both simultaneously, depending on the state of A1 and A0. Alternatively, the "write NV register" command can be used to store the current position of the wiper to the NV register.

Copy NV Register to Wiper Register (Command 11)

This command (C1, C0 = 11) restores the wiper position to the previously stored position in the NV register. This command may affect one potentiometer at a time, or both simultaneously, depending on the state of A1 and A0.

B) 8-clock cycle Data Move/Copy Sequence

TEXAS INSTRUMENTS

SLIS135A – DECEMBER 2010 – REVISED JANUARY 2011

www.ti.com

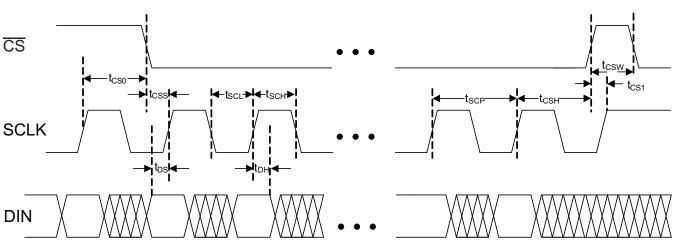


Figure 3. Digital Interface Timing Diagram

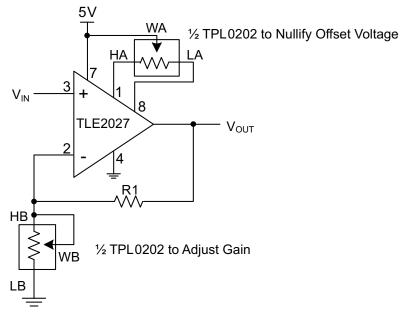


Figure 4. Offset Voltage and Gain Adjustment

www.ti.com

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
TPL0202-10MRTER	ACTIVE	WQFN	RTE	16	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	Purchase Samples
TPL0202-10RUCR	PREVIEW	QFN	RUC	14	3000	TBD	Call TI	Call TI	Samples Not Available

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

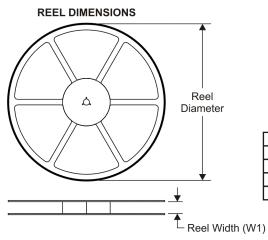
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

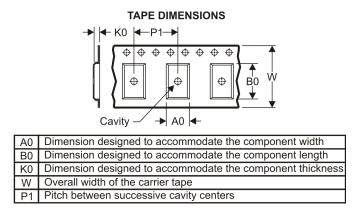
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

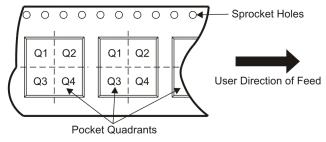
⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

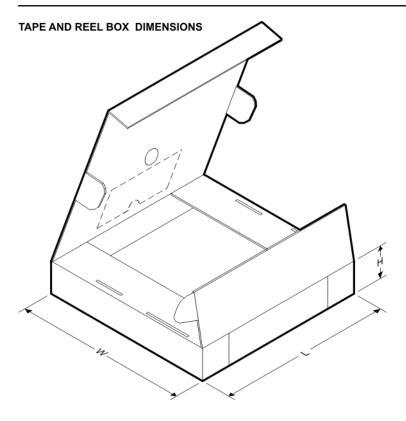

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

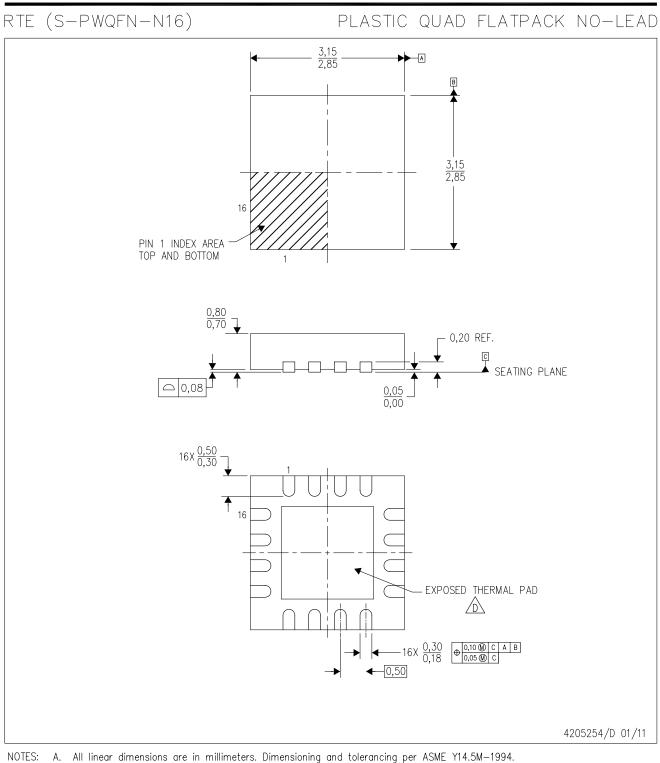
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	()	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPL0202-10MRTER	WQFN	RTE	16	3000	330.0	12.4	3.3	3.3	1.0	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION


18-Jan-2011

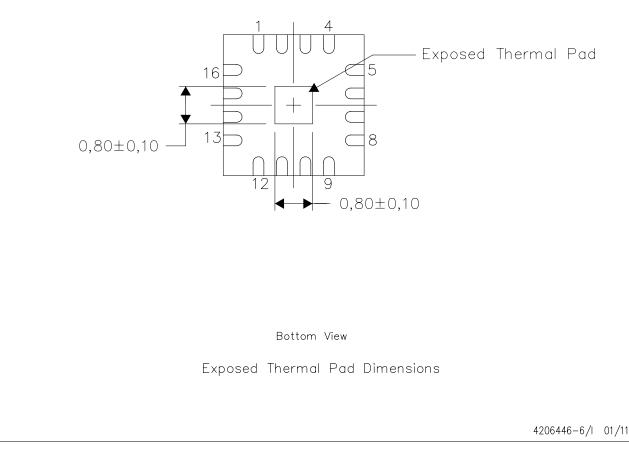
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPL0202-10MRTER	WQFN	RTE	16	3000	370.0	355.0	55.0

MECHANICAL DATA

- A. All linear almensions are in millimeters. Dimensioning and tolerancing per A B. This drawing is subject to change without notice.
 - C. Quad Flatpack, No-leads (QFN) package configuration.
 - The package thermal pad must be soldered to the board for thermal and mechanical performance. See the Product Data Sheet for details regarding the exposed thermal pad dimensions.
 - E. Falls within JEDEC MO-220.

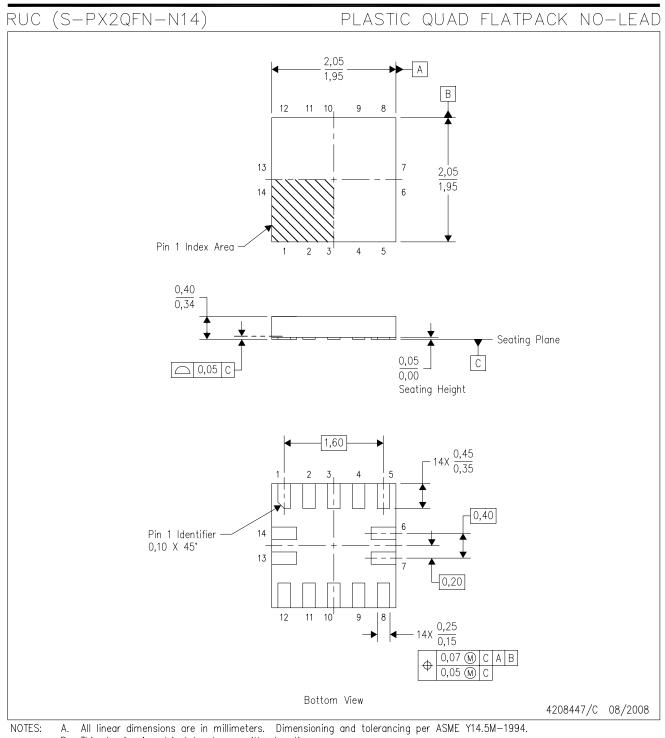
RTE (S-PWQFN-N16)


PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.


The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: A. All linear dimensions are in millimeters

MECHANICAL DATA

- Β. This drawing is subject to change without notice.
- C. QFN (Quad Flatpack No-lead) package configuration.D. This package complies to JEDEC MO-288 variation X2GFE.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com	Wireless	www.ti.com/wireless-apps
RF/IF and ZigBee® Solutions	www.ti.com/lprf		

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated