PCF85063BTL

Tiny Real-Time Clock/calendar with alarm function and SPI-bus

Rev. 0.04 — 5 April 2012

Objective data sheet

1. General description

The PCF85063BTL is a CMOS¹ Real-Time Clock (RTC) and calendar optimized for low power consumption. An offset register allows fine tuning of the clock. All addresses and data are transferred serially via a Serial Peripheral Interface (SPI-bus) with a maximum data rate of 6.25 Mbit/s. The register address is incremented automatically after each written or read data byte.

2. Features and benefits

- Provides year, month, day, weekday, hours, minutes, and seconds based on a 32.768 kHz quartz crystal
- Clock operating voltage: 0.9 V to 5.5 V
- Low current; typical 0.27 μA at V_{DD} = 3.0 V and T_{amb} = 25 °C
- 3 line SPI-bus with a maximum data rate of 6.25 Mbit/s
- Programmable clock output for peripheral devices (32.768 kHz, 16.384 kHz, 8.192 kHz, 4.096 kHz, 2.048 kHz, 1.024 kHz, and 1 Hz)
- Selectable integrated oscillator load capacitors for C_L = 7 pF or C_L = 12.5 pF
- Alarm function
- Countdown timer
- Minute and half minute interrupt
- Internal Power-On Reset (POR)
- Programmable offset register for frequency adjustment

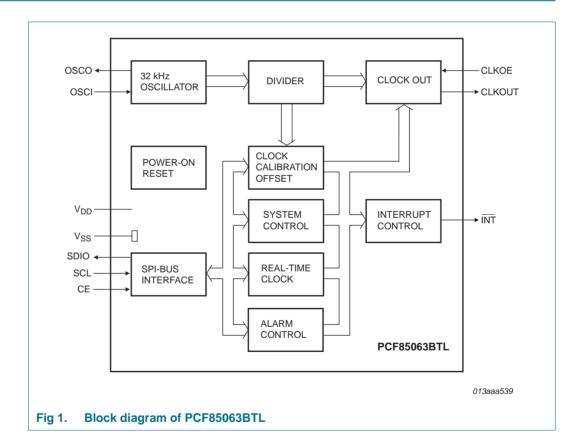
3. Applications

- Digital still camera
- Digital video camera
- Printers
- Copy machines
- Mobile equipment
- Battery powered devices

^{1.} The definition of the abbreviations and acronyms used in this data sheet can be found in Section 18.

Ordering information 4.

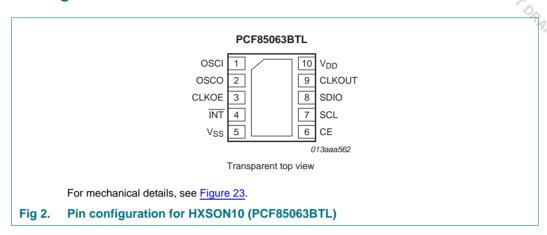
Table 1. **Ordering information**


NXP Semico	nductors	PCF8500	63BTL	A.
		Tiny Real-Time Clock/calendar with alarm function	and SPI-bus	AV
		RAK.	PAN PA	
4. Orderir	ng informa	ation	DA OA	Op
			-7/A - 7/A	7/
Гаble 1. Order	ing information	1	ORTA	Opp
Table 1. Order	ing information	1	ORAL	ORAN
		Description	Version	OPAA)

Marking 5.

Table 2. **Marking codes**

Type number	Marking code
PCF85063BTL	063B


Block diagram 6.

7. Pinning information

7.1 Pinning

7.2 Pin description

Table 3. Pin description

idbic o.	1 111 40001	iption	
Symbol	Pin	Туре	Description
OSCI	1	input	oscillator input
osco	2	output	oscillator output
CLKOE	3	input	CLKOUT enable
INT	4	output	interrupt output (open drain)
V_{SS}	5 <u>[1]</u>	supply	ground supply voltage
CE	6	input	chip enable
SCL	7	input	serial clock input
SDIO	8	input/output	serial data input and output
CLKOUT	9	output	clock output (push-pull)
V_{DD}	10	supply	supply voltage

^[1] The die paddle (exposed pad) is connected to V_{SS} and should be electrically isolated.

8. Functional description

The PCF85063BTL contains 18 8-bit registers with an auto-incrementing register address, an on-chip 32.768 kHz oscillator with integrated capacitors, a frequency divider which provides the source clock for the Real-Time Clock (RTC) and calender and a 400 kHz I²C-bus interface. All registers (see Table 4) are designed as addressable 8-bit parallel registers although not all bits are implemented. The first two registers (memory address 00h and 01h) are used as control and status register. The register at address 02h is an offset register allowing the fine-tuning of the clock; and at 03h is a free RAM byte. The addresses 04h through 0Ah are used as counters for the clock function (seconds up to years counters). Address locations 0Bh through 0Fh contain alarm registers which define the conditions for an alarm. The registers at 10h and 11h are for the timer function.

The Seconds, Minutes, Hours, Days, Months and Years as well as the corresponding alarm registers are all coded in Binary Coded Decimal (BCD) format. When one of the RTC registers is written or read, the contents of all time counters are frozen. Therefore, faulty writing or reading of the clock and calendar during a carry condition is prevented.

8.1 Register organization

Table 4. Register overview

Bit positions labeled as - are not implemented. After reset, all register are set according to Table 7.

A dalvas s	Decister news	D:4							
Address	Register name	Bit							
		7	6	5	4	3	2	1	0
Control a	nd status registe	ers							
00h	Control_1	EXT_TEST	-	STOP	SR	-	CIE	12_24	CAP_SEL
01h	Control_2	AIE	AF	MI	НМІ	TF	COF[2:0]		
02h	Offset	MODE	OFFSET[6	:0]					
03h	RAM_byte	B[7:0]							
Time and	date registers								
04h	Seconds	os	SECONDS	6 (0 to 59)					
05h	Minutes	-	MINUTES	(0 to 59)					
06h	Hours	-	-	AMPM	HOURS (1	to 12) in 12	h mode		
				HOURS (0	to 23) in 24	h mode			
07h	Days	-	-	DAYS (1 to	31)				
08h	Weekdays	-	-	-	-	-	WEEKDAY	'S (0 to 6)	
09h	Months	-	-	-	MONTHS ((1 to 12)			
0Ah	Years	YEARS (0 to	99)						
Alarm reg	gisters								
0Bh	Second_alarm	AE_S	SECOND_	ALARM (0	to 59)				
0Ch	Minute_alarm	AE_M	MINUTE_A	ALARM (0 to	59)				
0Dh	Hour_alarm	AE_H	-	AMPM	HOUR_AL	ARM (1 to 1	2) in 12 h m	ode	
				HOUR_AL	ARM (0 to 2	3) in 24 h m	ode		
0Eh	Day_alarm	AE_D	-	DAY_ALAF	RM (1 to 31)				
0Fh	Weekday_alarm	AE_W	-	-	-	-	WEEKDAY	_ALARM (0) to 6)

Table 4. Register overview ...continued

NXP Se	emiconducto	ors					PC	CF850	63BT	ORAK
				Tiny Real-	-Time Cloc	ck/calenda		72. 72	and SPI-bu	
								PA	OPA O	Pa
								~>	````	' \'\
Bit positio	Register overv	e not implei		fter reset, al	l register are	e set accord	ling to <u>Table</u>	<u>7</u> .	ORAK, ORA	OP OP
Table 4. Bit position Address	ns labeled as - are	e not implei		fter reset, al	l register are	e set accord	ling to <u>Table</u>	<u>7</u> .	ORAL DRA	DRAN
Bit positio	Register name	e not implei	mented. Ai					<u>7.</u>	ORAL, ORA	OPAN
Bit position Address	Register name	e not implei	mented. Ai					<u>7.</u>	ORAN ORA	ORAL)

8.2 Control registers

8.2.1 Register Control_1

Table 5. Control_1 - control and status register 1 (address 00h) bit description

	_	onition and otalao io	•
Bit	Symbol	Value	Description
7	EXT_TEST	O <u>[1]</u>	normal mode
		1	external clock test mode
6	-	0	unused
5	STOP	O <u>[1]</u>	RTC clock runs
		1	RTC clock is stopped; all RTC divider chain flip-flops are asynchronously set logic 0; the RTC clock is stopped
4	SR	0 <u>[1]</u>	no software reset
		1	initiate software reset[2]; this register will always return a 0 when read
3	-	0	unused
2	CIE	O <u>[1]</u>	no correction interrupt generated
		1	interrupt pulses are generated at every correction cycle
1	12_24	O <u>[1]</u>	24 hour mode is selected
		1	12 hour mode is selected
0	CAP_SEL		internal oscillator capacitor selection for quartz crystals with a corresponding load capacitance
		0[1]	7 pF
		1	12.5 pF

^[1] Default value.

8.2.1.1 EXT TEST: external clock test mode

A test mode is available which allows for on-board testing. In this mode, it is possible to set up test conditions and control the operation of the RTC.

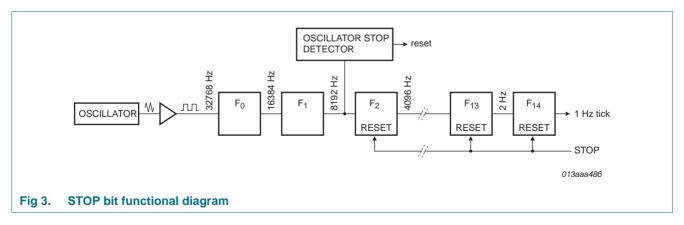
The test mode is entered by setting bit EXT_TEST in register Control_1. Then pin CLKOUT becomes an input. The test mode replaces the internal clock signal with the signal applied to pin CLKOUT.

^[2] For a software reset, 01011000 (58h) must be sent to register Control_1 (see Section 8.2.1.3).

The signal applied to pin CLKOUT should have a minimum pulse width of 300 ns and a maximum period of 1000 ns. The internal clock, now sourced from CLKOUT, is divided down to 1 Hz by a 2⁶ divide chain called a prescaler. The prescaler can be set into a known state by using bit STOP. When bit STOP is set, the prescaler is reset to 0. (STOP must be cleared before the prescaler can operate again.)

From a stop condition, the first 1 second increment will take place after 32 positive edges on pin CLKOUT. Thereafter, every 64 positive edges will cause a 1 second increment.

Remark: Entry into test mode is not synchronized to the internal 64 Hz clock. When entering the test mode, no assumption as to the state of the prescaler can be made.


Operation example:

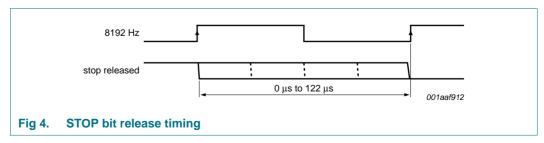
- 1. Set EXT_TEST test mode (register Control_1, bit EXT_TEST = 1).
- 2. Set STOP (Control_1, bit STOP = 1).
- 3. Clear STOP (Control_1, bit STOP = 0).
- 4. Set time registers to desired value.
- 5. Apply 32 clock pulses to pin CLKOUT.
- 6. Read time registers to see the first change.
- 7. Apply 64 clock pulses to pin CLKOUT.
- 8. Read time registers to see the second change.

Repeat 7 and 8 for additional increments.

8.2.1.2 STOP: RTC clock stop

The function of the STOP bit (see Figure 3) is to allow for accurate starting of the time circuits. The STOP bit function will cause the upper part of the prescaler (F_2 to F_{14}) to be held in reset and thus no 1 Hz ticks will be generated. It also stops the output of clock frequencies lower than 4 kHz on pin CLKOUT.

The time circuits can then be set and do not increment until the STOP bit is released (see Figure 4 and Table 6).

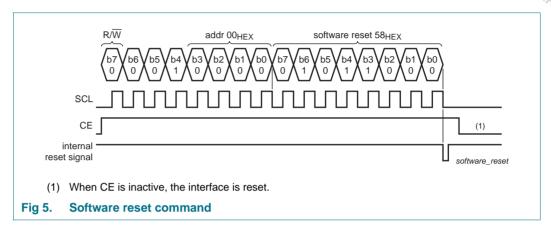


First increment of time circuits after STOP bit release Table 6.

	emiconductors			Tiny Real-Time	PCF85063BTL Clock/calendar with alarm function and SPI-bus
				This Roal Thine	Clock/calendar with alarm function and SPI-bus
Table 6. Bit	First increment of Prescaler bits[1]	time cir		er STOP bit relea	Comment prescaler counting normally annot be predicted externally
STOP		1 HZ ti	CK		Comment
	F ₀ F ₁ -F ₂ to F ₁₄			hh:mm:ss	^.
	running normally			40.45.40	nuncador countina normallu
O CTOD bit	01-0 0001 1101 0100	- F F		12:45:12	prescaler counting normally
1 1 STOP BIT	XX-0 0000 0000 0000	ı. r ₀ r ₁ ar	e not res	12:45:12	prescaler is reset; time circuits are frozen
-	e is set by user			12.45.12	prescaler is reset, time circuits are mozeri
1	XX-0 0000 0000 0000			08:00:00	prescaler is reset; time circuits are frozen
-	t is released by user			08.00.00	prescaler is reset, time circuits are mozeri
0	XX-0 0000 0000 0000			08:00:00	prescaler is now running
U	XX-1 0000 0000 0000 XX-1 0000 0000 0000	თ 	1	08:00:00	-
	XX-0 1000 0000 0000 XX-0 1000 0000 0000	0793		08:00:00	
	XX-1 1000 0000 0000 XX-1 1000 0000 0000	0 0.5		08:00:00	_
	:	— 813 t			•
	<u> </u>	0.507813 to 0.507935		08:00:00	· · · · · · · · · · · · · · · · · · ·
	00-0 0000 0000 0001	_	—५	08:00:01	0 to 1 transition of F ₁₄ increments the time circuits
	10-0 0000 0000 0001			08:00:01	-
	•		学	:	:
	<u> </u>	s oc		08:00:01	-
	00-0 0000 0000 0000	1.000000 s		08:00:01	-
	10-0 0000 0000 0000			08:00:01	-
	:		<u> </u>	:	:
	11-1 1111 1111 1110	_		08:00:01	-
	00-0 0000 0000 0001		—└┐	08:00:02	0 to 1 transition of F ₁₄ increments the time circuits

[1] F_0 is clocked at 32.768 kHz.

The lower two stages of the prescaler (F₀ and F₁) are not reset; and because the SPI-bus is asynchronous to the crystal oscillator, the accuracy of restarting the time circuits is between zero and one 8.192 kHz cycle (see Figure 4).



The first increment of the time circuits is between 0.507813 s and 0.507935 s after STOP bit is released. The uncertainty is caused by the prescaler bits F_0 and F_1 not being reset (see Table 6) and the unknown state of the 32 kHz clock.

8.2.1.3 SR: Software reset

A reset is automatically generated at power-on. A reset can also be initiated with the software reset command. Software reset command means setting bits 6, 4, and 3 in register Control_1 (00h) logic 1 and all other bits logic 0 by sending the bit sequence 01011000 (58h), see Figure 5.

In the reset state the SPI-bus logic is initialized including the address pointer and all registers are set according to <u>Table 7</u>. SPI-bus communication is not possible during reset.

Table 7. Register reset values

Address	Register name	Bit							
		7	6	5	4	3	2	1	0
00h	Control_1	0	0	0	0	0	0	0	0
01h	Control_2	0	0	0	0	0	0	0	0
02h	Offset	0	0	0	0	0	0	0	0
03h	RAM_byte	0	0	0	0	0	0	0	0
04h	Seconds	1	0	0	0	0	0	0	0
05h	Minutes	0	0	0	0	0	0	0	0
06h	Hours	0	0	0	0	0	0	0	0
07h	Days	0	0	0	0	0	0	0	1
08h	Weekdays	0	0	0	0	0	1	1	0
09h	Months	0	0	0	0	0	0	0	1
0Ah	Years	0	0	0	0	0	0	0	0
0Bh	Second_alarm	1	0	0	0	0	0	0	0
0Ch	Minute_alarm	1	0	0	0	0	0	0	0
0Dh	Hour_alarm	1	0	0	0	0	0	0	0
0Eh	Day_alarm	1	0	0	0	0	0	0	0
0Fh	Weekday_alarm	1	0	0	0	0	0	0	0
10h	Timer value	0	0	0	0	0	0	0	0
11h	Timer mode	0	0	0	1	1	0	0	0

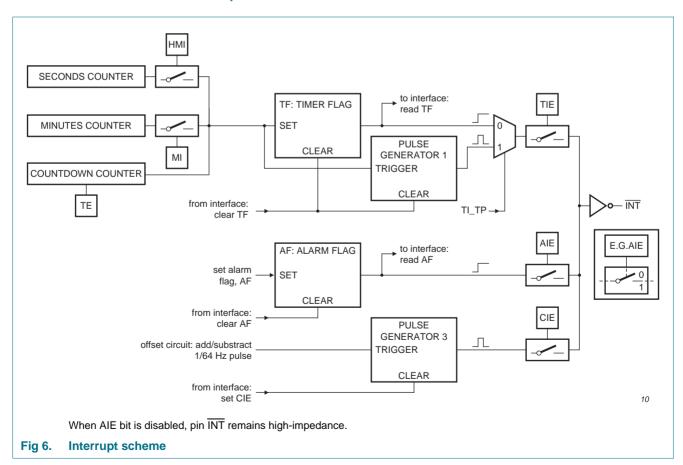

8.2.2 Register Control_2

Table 8. Control_2 - control and status register 2 (address 01h) bit description

ors			PCF85063BTL
		Real-Time Cloc	ck/calendar with alarm function and SPI-bus
Regis Fable 8	ter Control_2 Control_2 - cont	rol and status reg	gister 2 (address 01h) bit description
Bit	Symbol	Value	Description
7	AIE	0[1]	alarm interrupt disabled
		1	alarm interrupt enabled
6	AF	0[1]	read: alarm flag inactive
			write: alarm flag is cleared
		1	read: alarm flag active
			write: alarm flag remains unchanged
5	MI	0[1]	minute interrupt disabled
		1	minute interrupt enabled
4	HMI	0[1]	half minute interrupt disabled
		1	half minute interrupt enabled
3	TF	0[1]	no timer interrupt generated
		1	flag set when timer interrupt generated

^[1] Default value.

8.2.2.1 Alarm interrupt

AIE: This bit activates or deactivates the generation of an interrupt when AF is asserted, respectively.

AF: When an alarm occurs, AF is set logic 1. This bit maintains its value until overwritten using the interface. To prevent one flag being overwritten while clearing another, a logic AND is performed during a write access.

8.2.2.2 MI and HMI: minute and half minute interrupt

The minute interrupt (bit MI) and half minute interrupt (bit HMI) are pre-defined timers for generating periodic interrupts; see Figure 7. The timers are running in sync with the seconds counter (see Table 18). When starting MI, the first interrupt will be generated after 1 to 59 seconds; when starting HMI, the first interrupt will be generated after 1 to 29 seconds. Subsequent periods will not have such a delay. The timers can be enabled independently from one another. However, a minute interrupt enabled on top of a half minute interrupt will not be distinguishable.

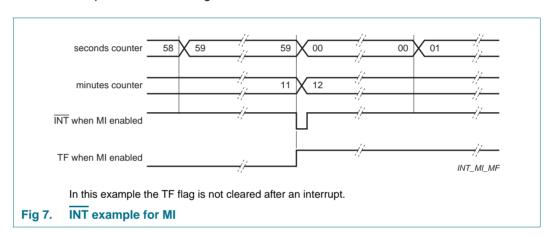


Table 9. Effect of bits MI and HMI on INT generation

Minute interrupt (bit MI)	Half minute interrupt (bit HMI)	Result
0	0	no interrupt generated
1	0	an interrupt every minute
0	1	an interrupt every 30 s
1	1	an interrupt every 30 s

The duration of the timer is affected by the register Offset (see <u>Section 8.2.3</u>). Only when the Offset has the value 00h the periods will be consistent.

8.2.2.3 TF: timer flag

The timer flag (bit TF) is set logic 1 on the first trigger of MI, HMI or the countdown timer. The purpose of the flag is to allow the controlling system to interrogate what caused the interrupt: timer or alarm. The flag can be read and cleared by the interface.

The status of the timer flag TF can affect the $\overline{\text{INT}}$ pulse generation depending on the setting of TI_TP (see Section 8.6.2):

- When TI_TP is set logic 1
 - an INT pulse is generated independent of the status of the timer flag TF
 - TF stays set until it is cleared

- TF does not affect INT
- the countdown timer runs in a repetitive loop and keeps generating timed periods.
- When TI_TP is set logic 0
 - the INT generation follows the TF flag
 - TF stays set until it is cleared
 - If TF is not cleared before the next coming interrupt no INT is generated
 - the countdown timer stops after the first countdown.

8.2.2.4 COF[2:0]: Clock output frequency

A programmable square wave is available at pin CLKOUT. Operation is controlled by the COF[2:0] bits in the register Control_2. Frequencies of 32.768 kHz (default) down to 1 Hz can be generated for use as a system clock, microcontroller clock, input to a charge pump, or for calibration of the oscillator.

Pin CLKOUT is an open-drain output and enabled at power-on. When disabled the output is high-impedance.

The duty cycle of the selected clock is not controlled. However, due to the nature of the clock generation, all will be 50 : 50 except the 32.768 kHz frequencies.

The STOP bit function can also affect the CLKOUT signal, depending on the selected frequency. When the STOP bit is set logic 1, the CLKOUT pin will generate a continuous LOW for those frequencies that can be stopped. For more details of the STOP bit function see Section 8.2.1.2.

Table 10. CLKOUT frequency selection

Bits COF[2:0]	CLKOUT frequency (Hz)	Typical duty cycle[1]	Effect of STOP bit
000[2]	32768	60:40 to 40:60	no effect
001	16384	50 : 50	no effect
010	8192	50 : 50	no effect
011	4096	50 : 50	CLKOUT = LOW
100	2048	50 : 50	CLKOUT = LOW
101	1024	50 : 50	CLKOUT = LOW
110	1 ^[3]	50 : 50	CLKOUT = LOW
111	CLKOUT = LOW	-	-

^[1] Duty cycle definition: % HIGH-level time : % LOW-level time.

8.2.3 Register Offset

The PCF85063BTL incorporates an offset register (address 02h) which can be used to implement several functions, such as:

- Accuracy tuning
- Ageing adjustment
- Temperature compensation

^[2] Default value.

^{[3] 1} Hz clock pulses will be affected by offset correction pulses.

Table 11. Offset - offset register (address 02h) bit description

tors			PCF85063B1L
	Tiny R	eal-Time Cloc	k/calendar with alarm function and SPI-bus
Table 1	1. Offset - offset regi	ister (address 02	2h) bit description
Bit	Symbol	Value	Description
	- ,		2000
7	MODE	0[1]	normal mode: offset is made once every two hours
7		0[1]	normal mode: offset is made once every two

^[1] Default value.

Each LSB will introduce an offset of 4.34 ppm for MODE = 0 and 4.069 ppm for MODE = 1. The values of 4.34 ppm and 4.069 ppm are based on a nominal 32.768 kHz clock. The offset value is coded in two's complement giving a range of +63 LSB to -64 LSB.

Table 12. Offset values

OFFSET[6:0]	Offset value in	Offset value in ppr	Offset value in ppm		
	decimal	Normal mode MODE = 0	Fast mode MODE = 1		
0111111	+63	+273.420	+256.347		
0111110	+62	+269.080	+252.278		
:	:	:	:		
0000010	+2	+8.680	+8.138		
0000001	+1	+4.340	+4.069		
0000000[1]	0	0[1]	0[1]		
1111111	–1	-4.340	-4.069		
1111110	-2	-8.680	-8.138		
:	:	:	:		
1000001	-63	-273.420	-256.347		
1000000	-64	-277.760	-260.416		

^[1] Default value.

The correction is made by adding or subtracting clock correction pulses, thereby changing the period of a single second but not by changing the oscillator frequency.

It is possible to monitor when correction pulses are applied. To enable correction interrupt generation, bit CIE (register Control_1) has to be set logic 1. At every correction cycle a $\frac{1}{1024}$ s pulse will be generated on pin INT. In the case that multiple correction pulses are applied, a $\frac{1}{1024}$ s interrupt pulse will be generated for each correction pulse applied.

8.2.3.1 Correction when MODE = 0

The correction is triggered once every two hours and then correction pulses are applied once per minute until the programmed correction values have been implemented.

Table 13. Correction pulses for MODE = 0

Correction value	Hour	Minute	Correction pulses on INT1 per minute[1]
+1 or –1	02	00	1
+2 or –2	02	00 and 01	1
+3 or –3	02	00, 01, and 02	1
:	:	:	:
+59 or –59	02	00 to 58	1
+60 or –60	02	00 to 59	1
+61 or –61	02	00 to 59	1
	03	00	1
+62 or –62	02	00 to 59	1
	03	00 and 01	1
+63 or –63	02	00 to 59	1
	03	00, 01, and 02	1
-64	02	00 to 59	1
	03	00, 01, 02, and 03	1

^[1] The correction pulses on pin $\overline{INT1}$ are $\frac{1}{64}$ s wide.

In MODE = 0, any timer or clock output using a frequency below 64 Hz will be affected by the clock correction (see $\underline{\text{Table 14}}$).

Table 14. Effect of correction pulses for MODE = 0

Frequency (Hz)	Effect of correction
CLKOUT	
32768	no effect
16384	no effect
8192	no effect
4096	no effect
2048	no effect
1024	no effect
1	affected
Timer source clock	
4096	no effect
64	no effect
1	affected
1/60	affected

8.2.3.2 Correction when MODE = 1

The correction is triggered once every four minutes and then correction pulses are applied once per second up to a maximum of 60 pulses. When correction values greater than 60 pulses are used, additional correction pulses are made in the 59th second.

Clock correction is made more frequently in MODE = 1; however, this can result in higher power consumption.

Table 15. Correction pulses for MODE = 1

Correction value	Minute	Second	Correction pulses on INT1 per second[1]
+1 or –1	02	00	1
+2 or –2	02	00 and 01	1
+3 or –3	02	00, 01, and 02	1
:	:	:	:
+59 or –59	02	00 to 58	1
+60 or –60	02	00 to 59	1
+61 or –61	02	00 to 58	1
	02	59	2
+62 or –62	02	00 to 58	1
	02	59	2
+63 or –63	02	00 to 58	1
	02	59	4
-64	02	00 to 58	1
	02	59	5

^[1] The correction pulses on pin $\overline{\text{INT1}}$ are $\frac{1}{1024}$ s wide. For multiple pulses they are repeated at an interval of $\frac{1}{1612}$ s.

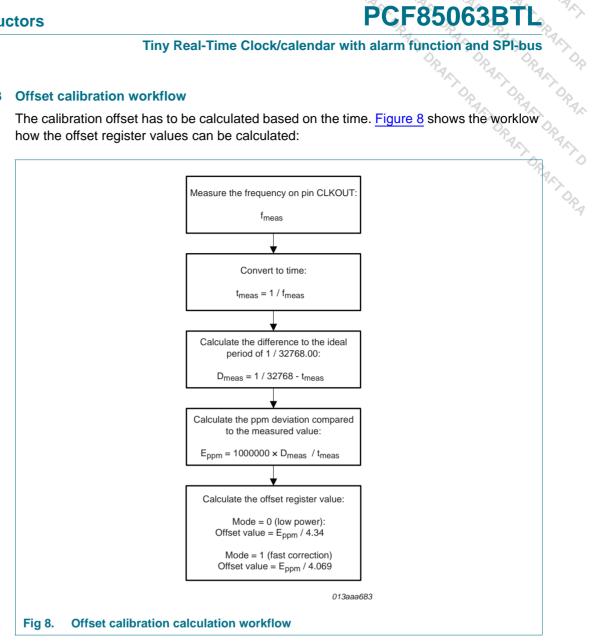

In MODE = 1, any timer source clock using a frequency below 4.096 kHz will be also affected by the clock correction (see $\frac{\text{Table 16}}{\text{Table 16}}$).

Table 16. Effect of correction pulses for MODE = 1

Frequency (Hz)	Effect of correction
CLKOUT	
32768	no effect
16384	no effect
8192	no effect
4096	no effect
2048	no effect
1024	no effect
1	affected
Timer source clock	
4096	no effect
64	affected
1	affected
1/60	affected

8.2.3.3 Offset calibration workflow

8.2.4 Register: RAM_byte

The PCF85063BTL provides a free RAM byte, which can be used for any purpose, e.g. status bytes of the system.

Table 17. RAM_byte - 8 bit RAM register (address 03h) bit description

Bit	Symbol	Value	Description
7 to 0	B[7:0]	00000000 <mark>1</mark> 1 to	RAM content

[1] Default value.

8.3 Time and date registers

The majority of the registers are coded in the BCD format to simplify application use.

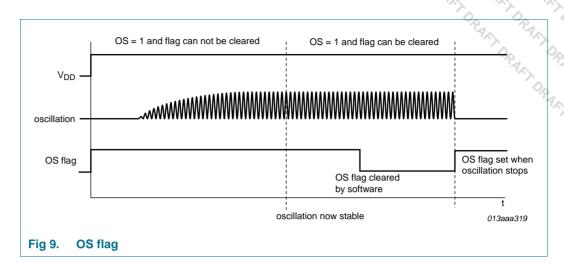
8.3.1 Register Seconds

Table 18. Seconds - seconds register (address 04h) bit description

		• •	•	•
Bit	Symbol	Value	Place value	Description
7	OS	0	-	clock integrity is guaranteed
		1[1]	-	clock integrity is not guaranteed; oscillator has stopped or has been interrupted
6 to 4	SECONDS	0 <u>11</u> to 5	ten's place	actual seconds coded in BCD
3 to 0		0[1] to 9	unit place	format, see <u>Table 19</u>

^[1] Default value.

Table 19. Seconds coded in BCD format


Seconds value in	Upper-digit (ten's place)		Digit (unit place)				
decimal	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
00[1]	0	0	0	0	0	0	0
01	0	0	0	0	0	0	1
02	0	0	0	0	0	1	0
:	:	:	:		:	:	:
09	0	0	0	1	0	0	1
10	0	0	1	0	0	0	0
:	:	:	:	:	:	:	:
58	1	0	1	1	0	0	0
59	1	0	1	1	0	0	1

^[1] Default value.

8.3.1.1 OS: Oscillator stop

When the oscillator of the PCF85063BTL is stopped, the OS flag is set. The oscillator can be stopped, for example, by connecting one of the oscillator pins OSCI or OSCO to ground. The oscillator is considered to be stopped during the time between power-on and stable crystal resonance. This time can be in the range of 200 ms to 2 s depending on crystal type, temperature and supply voltage.

The flag will remain set until cleared by software (see <u>Figure 9</u>). If the flag cannot be cleared, then the oscillator is not running. This method can be used to monitor the oscillator and to determine if the supply voltage has reduced to the point where oscillation fails.

8.3.2 Register Minutes

Table 20. Minutes - minutes register (address 05h) bit description

Bit	Symbol	Value	Place value	Description
7	-	-	-	unused
6 to 4	MINUTES	0 ^[1] to 5	ten's place	actual minutes coded in BCD
3 to 0		0[1] to 9	unit place	format

^[1] Default value.

8.3.3 Register Hours

Table 21. Hours - hours register (address 06h) bit description

Bit	Symbol	Value	Place value	Description
7 to 6	-	-	-	unused
12 hou	mode ^[1]			
5	5 AMPM	0[2]	-	indicates AM
		1	-	indicates PM
4	HOURS	0 ² to 1	ten's place	actual hours in 12 hour mode
3 to 0		0[2] to 9	unit place	coded in BCD format
24 houi	mode ^[1]			
5 to 4	HOURS	0 ² to 2	ten's place	actual hours in 24 hour mode
3 to 0		0 <u>2</u> to 9	unit place	coded in BCD format

^[1] Hour mode is set by the 12_24 bit in register Control_1.

^[2] Default value.

8.3.4 Register Days

Table 22. Days - days register (address 07h) bit description

tors				PCF85063BTL
	Ti	iny Real-Time Clo	ock/calendar wi	ith alarm function and SPI-bus
				\sim \sim \sim \sim
	t er Days 2. Days - days r	register (address 0	7h) bit descriptio	on PART OR A
Table 2	-	register (address 0	7h) bit descriptio	Description
Table 2	2. Days - days r			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Regist Table 2 Bit 7 to 6 5 to 4	2. Days - days r			Description

^[1] The PCF85063BTL compensates for leap years by adding a 29th day to February if the year counter contains a value which is exactly divisible by 4, including the year 00.

8.3.5 Register Weekdays

Table 23. Weekdays - weekdays register (address 08h) bit description

Bit	Symbol	Value	Description
7 to 3	-	-	unused
2 to 0	WEEKDAYS	0 to 6	actual weekday values, see Table 24

Table 24. Weekday assignments

Day[1]	Bit	Bit					
	2	1	0				
Sunday	0	0	0				
Monday	0	0	1				
Tuesday	0	1	0				
Wednesday	0	1	1				
Thursday	1	0	0				
Friday	1	0	1				
Saturday[2]	1	1	0				

^[1] Definition may be re-assigned by the user.

8.3.6 Register Months

Table 25. Months - months register (address 09h) bit description

Bit	Symbol	Value	Place value	Description
7 to 5	-	-	-	unused
4	MONTHS	0 to 1	ten's place	actual month coded in BCD
3 to 0		0 to 9	unit place	format, see <u>Table 26</u>

^[2] Default value.

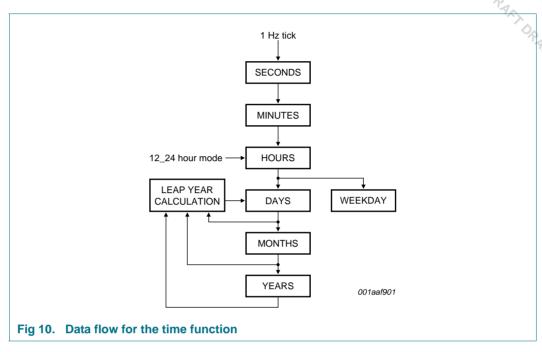
^[2] Default value.

Table 26. Month assignments in BCD format

tors				PCF8	35063B	TL,
	Tiny R	eal-Time C	lock/calendar	with alarm fu	nction and SPI	bus
Table 26. N	onth assignment	s in BCD fo	rmat		PA	P
Month	Upper-digit (ten's place)	Digit (unit	place)			Z
	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
January[1]	0	0	0	0	1	PA
February	0	0	0	1	0	
March	0	0	0	1	1	
April	0	0	1	0	0	
May	0	0	1	0	1	
June	0	0	1	1	0	
July	0	0	1	1	1	
August	0	1	0	0	0	
September	0	1	0	0	1	
October	1	0	0	0	0	
November	1	0	0	0	1	
December	1	0	0	1	0	

^[1] Default value.

8.3.7 Register Years

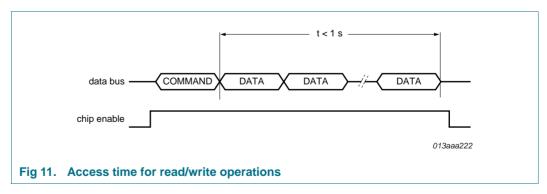

Table 27. Years - years register (0Ah) bit description

Bit	Symbol	Value	Place value	Description
7 to 4	YEARS	0[1] to 9	ten's place	actual year coded in BCD format
3 to 0		0[1] to 9	unit place	

^[1] Default value.

8.4 Setting and reading the time

Figure 10 shows the data flow and data dependencies starting from the 1 Hz clock tick.



During read/write operations, the time counting circuits (memory locations 04h through 0Ah) are blocked.

This prevents

- Faulty reading of the clock and calendar during a carry condition
- Incrementing the time registers, during the read cycle

After this read/write access is completed, the time circuit is released again and any pending request to increment the time counters that occurred during the read/write access is serviced. A maximum of 1 request can be stored; therefore, all accesses must be completed within 1 second (see Figure 11).

As a consequence of this method, it is very important to make a read or write access in one go, that is, setting or reading seconds through to years should be made in one single access. Failing to comply with this method could result in the time becoming corrupted.

As an example, if the time (seconds through to hours) is set in one access and then in a second access the date is set, it is possible that the time may increment between the two accesses. A similar problem exists when reading. A roll over may occur between reads thus giving the minutes from one moment and the hours from the next.

8.5 Alarm registers

8.5.1 Register Second_alarm

Table 28. Second_alarm - second alarm register (address 0Bh) bit description

Bit	Symbol	Value	Place value	Description
7	AE_S	0	-	second alarm is enabled
		1[1]	-	second alarm is disabled
6 to 4	SECOND_ALARM	0 ^[1] to 5	ten's place	second alarm information coded
3 to 0		0[1] to 9	unit place	in BCD format

^[1] Default value.

8.5.2 Register Minute_alarm

Table 29. Minute_alarm - minute alarm register (address 0Ch) bit description

Bit	Symbol	Value	Place value	Description
7	AE_M	0	-	minute alarm is enabled
		1[1]	-	minute alarm is disabled
6 to 4	MINUTE_ALARM	0[1] to 5	ten's place	minute alarm information coded in
3 to 0		0[1] to 9	unit place	BCD format

^[1] Default value.

8.5.3 Register Hour_alarm

Table 30. Hour_alarm - hour alarm register (address 0Dh) bit description

D.,	0 1 1	V/-1 -	Bloom II	B
Bit	Symbol	Value	Place value	Description
7	AE_H	0	-	hour alarm is enabled
		1[1]	-	hour alarm is disabled
6	-	-	-	unused
12 hou	mode ^[2]			
5	AMPM	0[1]	-	indicates AM
		1	-	indicates PM
4	HOUR_ALARM	0[1] to 1	ten's place	hour alarm information coded in
3 to 0		0[1] to 9	unit place	BCD format when in 12 hour mode
24 hou	r mode <u>^[2]</u>			
5 to 4	HOUR_ALARM	0[1] to 2	ten's place	hour alarm information coded in
3 to 0		0[1] to 9	unit place	BCD format when in 24 hour mode

^[1] Default value.

^[2] Hour mode is set by the 12_24 bit in register Control_1.

8.5.4 Register Day alarm

Table 31. Day alarm - day alarm register (address 0Eh) bit description

tors				PCF85063BTL
	Tin	y Real-Time Clo	ock/calendar w	ith alarm function and SPI-bus
Pogis	tor Day, alarm			NAME OF TAKE
Regis	ter Day_alarm			RAY RAY
Table 3	4 David alasmin da	and the second of the second		
Table 3	o1. Day_alarm - da	ay alarm register	(address 0Eh) bi	t description
Bit	Symbol	Value	(address 0Eh) bi	
Bit	Symbol	Value		Description
Bit	Symbol	Value 0		Description day alarm is enabled
Bit 7	Symbol	Value 0		Description day alarm is enabled day alarm is disabled

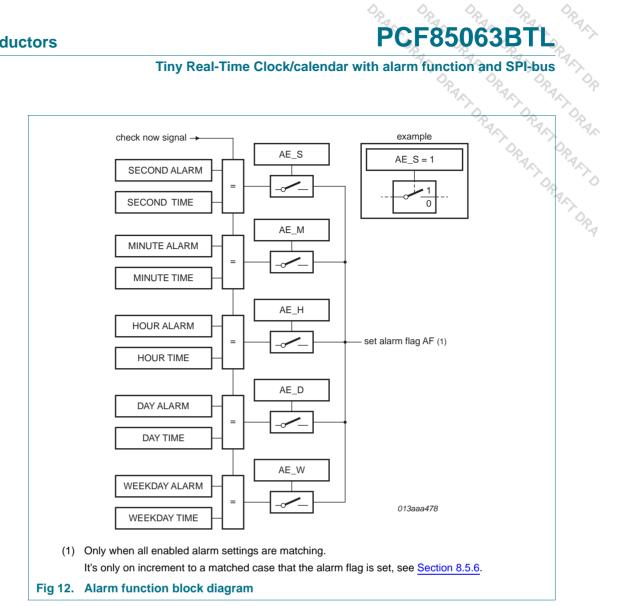
^[1] Default value.

8.5.5 Register Weekday_alarm

Table 32. Weekday_alarm - weekday alarm register (address 0Fh) bit description

Bit	Symbol	Value	Description
7	AE_W	0	weekday alarm is enabled
		1[1]	weekday alarm is disabled
6 to 3	-	-	unused
2 to 0	WEEKDAY_ALARM	0[1] to 6	weekday alarm information coded in BCD format

^[1] Default value.


8.5.6 Alarm function

By clearing the alarm enable bit (AE x) of one or more of the alarm registers, the corresponding alarm condition(s) are active. When an alarm occurs, AF is set logic 1. The asserted AF can be used to generate an interrupt (INT). The AF is cleared using the interface.

The registers at addresses 0Bh through 0Fh contain alarm information. When one or more of these registers is loaded with second, minute, hour, day or weekday, and its corresponding AE_x is logic 0, then that information is compared with the current second, minute, hour, day, and weekday. When all enabled comparisons first match, the alarm flag (AF in register Control_2) is set logic 1.

The generation of interrupts from the alarm function is controlled via bit AIE. If bit AIE is enabled, the INT pin follows the condition of bit AF. AF will remain set until cleared by the interface. Once AF has been cleared, it will only be set again when the time increments to match the alarm condition once more. Alarm registers which have their AE x bit at logic 1 are ignored.

8.6 Timer registers

The 8-bit countdown timer at address 10h is controlled by the register Timer_mode at address 11h.

8.6.1 Register Timer_value

Table 33. Timer_value - timer value register (address 10h) bit description

		•	
Bit	Symbol	Value	Description
7 to 0	T[7:0]	0h ^[1] to	countdown period in seconds:
		FFh	$CountdownPeriod = \frac{n}{SourceClockFrequency}$
			where n is the countdown value

^[1] Default value.

8.6.2 Register Timer_mode

Table 34. Timer mode - timer control register (address 11h) bit description

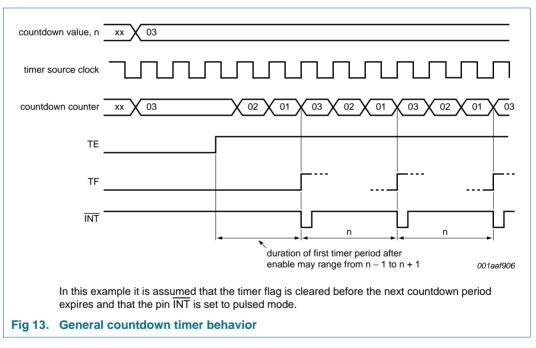
Bit	Symbol	Value	Description
7 to 5	-	-	unused
4 to 3	TCF[1:0]		timer clock frequency
		00	4.096 kHz timer source clock
		01	64 Hz timer source clock
		10	1 Hz timer source clock
		11[1]	½ Hz timer source clock
2	TE		timer enable
		0[1]	timer is disabled
		1	timer is enabled
1	TIE		timer interrupt enable
		0[1]	no interrupt generated from timer
		1	interrupt generated from timer
0	TI_TP[2]	timer clock frequency 00 4.096 kHz timer source clock 01 64 Hz timer source clock 10 1 Hz timer source clock 11 1/60 Hz timer source clock timer enable 0[1] timer is disabled 1 timer is enabled timer interrupt enable 0[1] no interrupt generated from timer 1 interrupt generated from timer timer interrupt mode 0[1] interrupt follows timer flag	timer interrupt mode
		0[1]	interrupt follows timer flag
		1	interrupt generates a pulse

^[1] Default value.

8.6.3 Timer functions

The timer has four selectable source clocks allowing for countdown periods in the range from 244 μs to 4 h 15 min. For periods greater than 4 hours, the alarm function can be used.

^[2] How the setting of TI_TP and the timer flag TF can affect the INT pulse generation is explained in Section 8.2.2.3 on page 10.


Table 35	Timor	clock	fraguancy	and	timer duration	16
Table 55.	Himer	CIOCK	rrequency	ano	timer duration	15

			AN AN AN
Table 35.	Timer clock frequence	y and timer durations	PA PA PA
TCF[1:0]	Timer source clock	Delay	· · · ·
	frequency[1]	Minimum timer duration n = 1	Maximum timer duration n = 255
00	4.096 kHz	244 μs	62.256 ms
01	64 Hz	15.625 ms	3.984 s
10	1 Hz ^[2]	1 s	255 s
11	½ Hz[2]	60 s	4 h 15 min

- [1] When not in use, TCF must be set to $\frac{1}{60}$ Hz for power saving.
- [2] Time periods can be affected by correction pulses.

Remark: Note that all timings which are generated from the 32.768 kHz oscillator are based on the assumption that there is 0 ppm deviation. Deviation in oscillator frequency will result in deviation in timings. This is not applicable to interface timing.

The timer counts down from a software-loaded 8-bit binary value, n, in register Timer_value. Loading the counter with 0 stops the timer. Values from 1 to 255 are valid. When the counter reaches 1, the timer flag (bit TF in register Control 2) will be set and the counter automatically re-loads and starts the next timer period. Reading the timer will return the current value of the countdown counter (see Figure 13).

If a new value of n is written before the end of the current timer period, then this value will take immediate effect. NXP does not recommend changing n without first disabling the counter by setting bit TE logic 0. The update of n is asynchronous to the timer clock, therefore changing it without setting bit TE logic 0 may result in a corrupted value loaded into the countdown counter which results in an undetermined countdown period for the first period. The countdown value n will, however, be correctly stored and correctly loaded on subsequent timer periods.

When the TIE flag is set, an interrupt signal on INT will be generated provided that this mode is enabled. See Section 8.2.2 for details on how the interrupt can be controlled.

When starting the timer for the first time, the first period will have an uncertainty which is a result of the enable instruction being generated from the interface clock which is asynchronous from the timer source clock. Subsequent timer periods will have no such delay. The amount of delay for the first timer period will depend on the chosen source clock, see Table 36.

Table 36. First period delay for timer counter value n

Timer source clock	Minimum timer period	Maximum timer period
4.096 kHz	n	n + 1
64 Hz	n	n + 1
1 Hz	(n – 1) + ½ Hz	n + ½ Hz
¹⁄ ₆₀ Hz	(n – 1) + ½ Hz	n + ¹ / ₆₄ Hz

At the end of every countdown, the timer sets the countdown timer flag (bit TF in register Control_2). Bit TF can only be cleared by software. The asserted bit TF can be used to generate an interrupt at pin $\overline{\text{INT}}$. The interrupt may be generated as a pulsed signal every countdown period or as a permanently active signal which follows the condition of bit TF. Bit TI_TP is used to control this mode selection and the interrupt output may be disabled with bit TIE, see Table 34.

When reading the timer, the current countdown value is returned and **not** the initial value n. Since it is not possible to freeze the countdown timer counter during read back, it is recommended to read the register twice and check for consistent results.

Timer source clock frequency selection of 1 Hz and $^{1}/_{60}$ Hz will be affected by the Offset_register. The duration of a program period will vary according to when the offset is initiated. For example, if a 100 s timer is set using the 1 Hz clock as source, then some 100 s periods will contain correction pulses and therefor be longer or shorter depending on the setting of the Offset_register. See Section 8.2.3 to understand the operation of the Offset_register.

8.6.3.1 Countdown timer interrupts

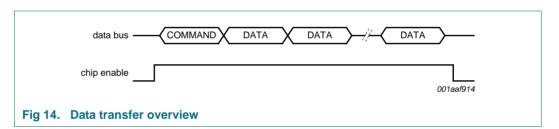
The pulse generator for the countdown timer interrupt uses an internal clock and is dependent on the selected source clock for the countdown timer and on the countdown value n. As a consequence, the width of the interrupt pulse varies (see Table 37).

Table 37. INT operation[1]

Source clock (Hz)	INT period (s)			
	n = 1[2]	n > 1[2]		
4096	1/8192	1/4096		
64	1/128	1/64		
1	1/64	1/64		
1/60	1/64	1/64		

^[1] TF and INT become active simultaneously.

^[2] n = loaded countdown value. Timer stops when n = 0.

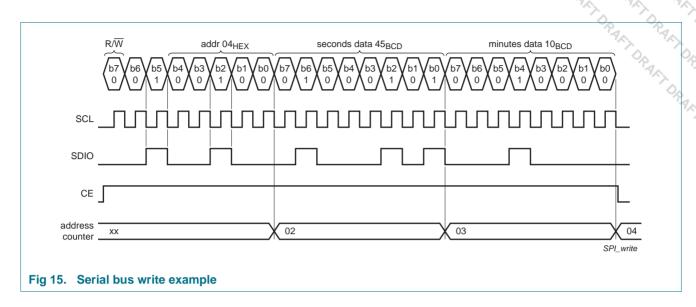

9. SPI-bus interface

Data transfer to and from the device is made via a 3-wire SPI-bus (see <u>Table 38</u>). The chip enable signal is used to identify the transmitted data. Each data transfer is a byte, with the Most Significant Bit (MSB) sent first (see <u>Figure 14</u>).

Table 38. Serial interface

Symbol	Function	Description
CE	chip enable input	when LOW, the interface is reset; pull-down resistor included; active input may be higher than V_{DD} , but may not be wired permanently HIGH
SCL	serial clock input	when CE is LOW, this input may float; input may be higher than $\ensuremath{V_{\text{DD}}}$
SDIO	serial data input and	doutput
	input	when CE is LOW, input may float; input may be higher than V_{DD} ; input data is sampled on the rising edge of SCL
	output	push-pull output; drives from V_{SS} to V_{DD} ; output data is changed on the falling edge of SCL; will be high-Z when not driving
•		

The transmission is controlled by the active HIGH chip enable signal CE. The first byte transmitted is the command byte. Subsequent bytes will be either data to be written or data to be read. Data is sampled on the rising edge of the clock and transferred internally on the falling edge.



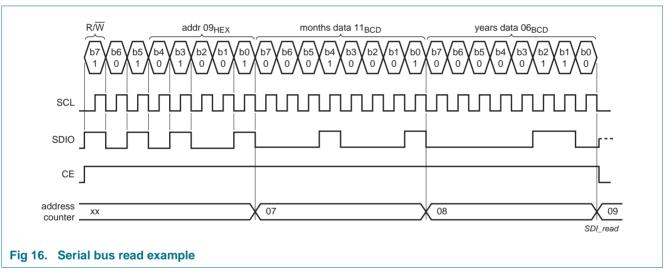

The command byte defines the address of the first register to be accessed and the read/write mode. The address counter will auto increment after every access and will rollover to zero after the last register is accessed. The read/write bit (R/W) defines if the following bytes will be read or write information.

Table 39. Command byte definition

Bit	Symbol	Value	Description
7	R/W		data read or data write selection
		0	write data
		1	read data
6 to 4	SA	001	subaddress; other codes will cause the device to ignore data transfer
3 to 0	RA	0h to Fh	register address range

In <u>Figure 15</u>, the register Seconds is set to 45 seconds and the register Minutes is set to 10 minutes. In <u>Figure 16</u>, the Months and Years registers are read.

10. Internal circuitry

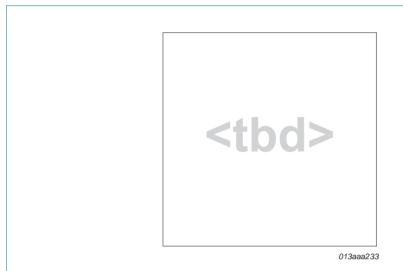


Fig 17. Device diode protection diagram

11. Limiting values

Table 40. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

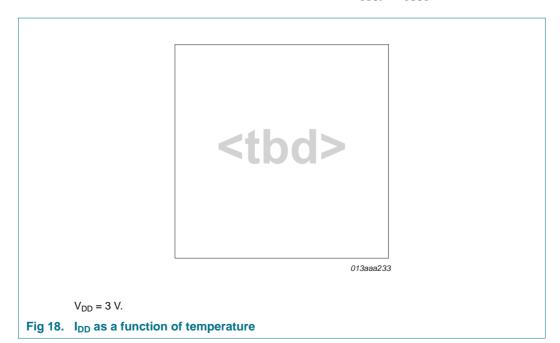
Symbol	Parameter	Conditions	Min	Max	Unit
V_{DD}	supply voltage		-0.5	+6.5	V
I_{DD}	supply current		-50	+50	mA
VI	input voltage	on pins SCL, SDA, and OSCI	-0.5	+6.5	V
Vo	output voltage		-0.5	+6.5	V
l _l	input current	at any input	-10	+10	mA
I _O	output current	at any output	-10	+10	mΑ
P _{tot}	total power dissipation		-	300	mW
V_{ESD}	electrostatic discharge	HBM	<u>[1]</u> -	±5000	V
	voltage	CDM	<u>[2]</u> -	±1750	V
I _{lu}	latch-up current		<u>[3]</u> _	200	mA
T _{stg}	storage temperature		<u>[4]</u> –65	+150	°C
T_{amb}	ambient temperature	operating device	-40	+85	°C

^[1] Pass level; Human Body Model (HBM) according to Ref. 6 "JESD22-A114".

^[2] Pass level; Charged-Device Model (CDM), according to Ref. 7 "JESD22-C101".

^[3] Pass level; latch-up testing, according to Ref. 8 "JESD78" at maximum ambient temperature (T_{amb(max)}).

^[4] According to the NXP store and transport requirements (see Ref. 10 "NX3-00092") the devices have to be stored at a temperature of +8 °C to +45 °C and a humidity of 25 % to 75 %. For long term storage products deviant conditions are described in that document.


NXP 3	Semiconductors		PCF85063B1L ny Real-Time Clock/calendar with alarm function and SPI-bus 85 °C; $f_{osc} = 32.768$ kHz; quartz $R_s = 15$ k Ω ; $C_L = 7$ pF; unless otherwise				
		Tiny Real-Time CI	ock/d	calendar	with alarn	n function and	d SPI-bus
						775	AS R
2. S	Static characteristic	CS				OPA	OPA
able 4	Static characteristics						Op
	.1 V to 5.5 V; $V_{SS} = 0$ V; $T_{amb} = 0$	= -40 °C to $+85$ °C; $f_{\rm osc} = 32.768$	3 kHz;	quartz R _s	$= 15 k\Omega; C_l$	_ = 7 <i>pF; unl</i> ess	otherwise
Symbo	I Parameter	Conditions		Min	Тур	Max	Unit
Supplie	es						
V_{DD}	supply voltage	for clock data integrity; interface inactive	<u>[1]</u>	0.9	-	5.5	V
	interface active		1.6	-	5.5	V	
I _{DD}	supply current	interface inactive; CLKOUT disabled;	[2]				
		T _{amb} = 25 °C					
		V _{DD} = 5.0 V		-	120	-	nA
		V _{DD} = 3.0 V		-	110	-	nA
		$V_{DD} = 2.0 \text{ V}$		-	100	-	nA
		T_{amb} = -40 °C to +85 °C	[2]				
		$V_{DD} = 2.0 \text{ V}$		-	-	330	nA
		$V_{DD} = 3.0 \text{ V}$		-	-	350	nA
		$V_{DD} = 5.0 \text{ V}$		-	-	380	nA
		interface active					
		$f_{SCL} = 4.5 \text{ MHz};$ $V_{DD} = 5 \text{ V}$		-	250	400	μΑ
		$f_{SCL} = 1.0 \text{ MHz};$ $V_{DD} = 3 \text{ V}$		-	30	80	μΑ
Inputs							
V _{IL}	LOW-level input voltage			-	-	$0.3V_{DD}$	V
V_{IH}	HIGH-level input voltage			$0.7V_{DD}$	-	-	V
V _I	input voltage	on pins CE, SDI, SCL, OSCI, CLKOE, CLKOUT		-0.5	-	+5.5	V
I _{LI}	input leakage current						
		$V_I = V_{DD}$ or V_{SS} on pins SDI, SCL, OSCI, CLKOE, CLKOUT		-	0	-	μΑ
		$V_I = V_{SS}$ on pin CE		-1	0	-	μΑ
		post ESD event		-1	-	+1	μА
R _{pd}	pull-down resistance	on pin CE		-	240	550	kΩ
C _i	input capacitance	on pins SDI, SCL, CLKOE and CE	[3]	-	-	7	pF
Output	S						
Vo	output voltage	on pins CLKOUT and $\overline{\text{INT}}$	<u>[4]</u>	-0.5	-	+5.5	V
		on pin OSCO		-0.5	-	+5.5	V
		on pin SDO		-0.5	-	V _{DD} + 0.5	V
V _{OH}	HIGH-level output voltage	on pin SDO		0.8V _{DD}	-	V_{DD}	V

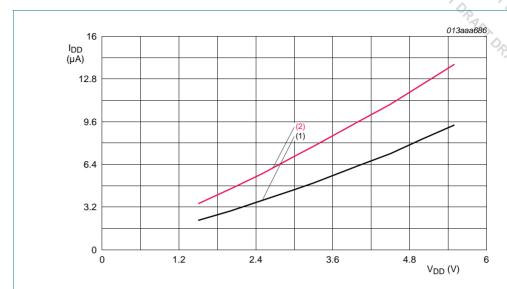
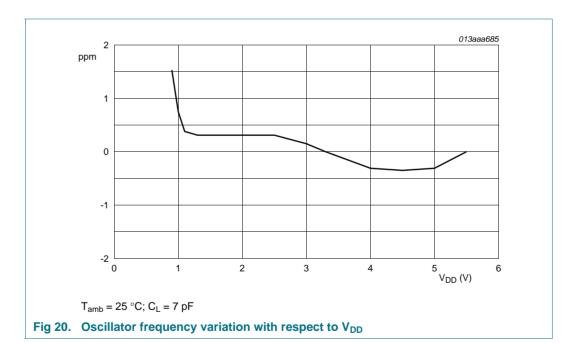


Table 41. Static characteristics ... continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{OL} LOW-level output voltage	on pin SDO	V_{SS}	-	$0.2V_{DD}$	V	
		on pins CLKOUT and \overline{INT} ; $V_{DD} = 5 \text{ V}$; $I_{OL} = 1.5 \text{ mA}$	V_{SS}	-	0.4	V
ОН	HIGH-level output current	output source current; $V_{OH} = 4.6 \text{ V};$ $V_{DD} = 5 \text{ V}$ on pin SDO	1.5	-	-	mA
OL	LOW-level output current	output sink current; $V_{OL} = 0.4 \text{ V};$ $V_{DD} = 5 \text{ V on pins } \overline{\text{INT}},$ SDO and CLKOUT	1.5	-	-	mA
LO	output leakage current	$V_O = V_{DD}$ or V_{SS}	-	0	-	μΑ
	post ESD event	-1	-	+1	μΑ	
C _{L(itg)} integrated load capacitance	on pins OSCO, OSCI	<u>[5]</u>				
		$C_L = 7 pF$	4.2	7	9.8	pF
		$C_L = 12.5 \text{ pF}$	7.5	12.5	17.5	pF
R _s	series resistance		-	-	100	kΩ

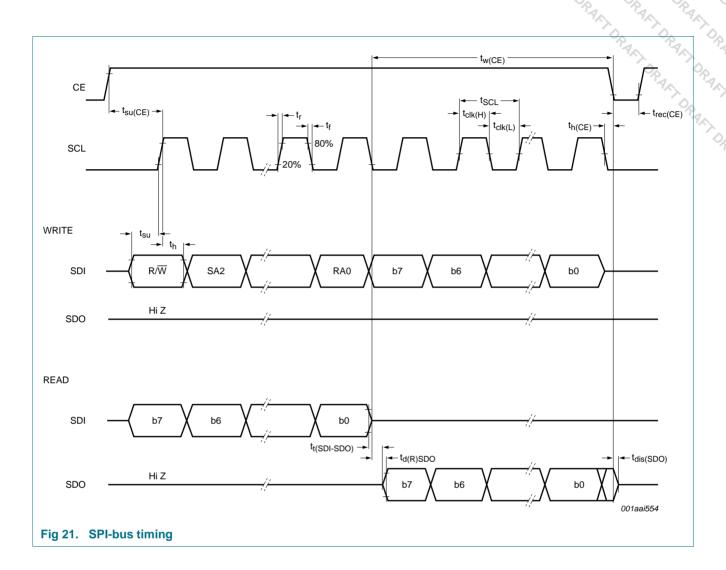
- [1] For reliable oscillator start at power-on: $V_{DD} = V_{DD(min)} + 0.3 \text{ V}$.
- Timer source clock = $\frac{1}{60}$ Hz, level of pins CE, SDI, and SCL is V_{DD} or V_{SS} .
- Implicit by design.
- Refers to external pull-up voltage.
- Integrated load capacitance, $C_{L(itg)}$, is a calculation of C_{OSCI} and C_{OSCO} in series: $C_{L(itg)} = \frac{(C_{OSCI} \cdot C_{OSCO})}{(C_{OSCI} + C_{OSCO})}$.



 T_{amb} = 25 °C; f_{CLKOUT} = 32768 Hz.

- (1) 22 pF.
- (2) 47 pF.

Fig 19. I_{DD} with respect to V_{DD} when CLKOUT active



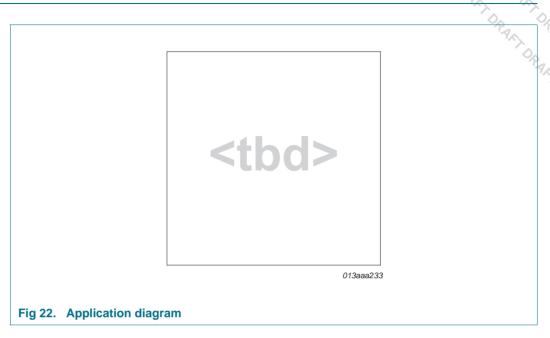

13. Dynamic characteristics

Table 42. SPI-bus characteristics $V_{SS} = 0 \text{ V}; T_{amb} = -40 \text{ °C to } +85 \text{ °C}.$ All timing values are valid within the operating supply voltage and temperature range and referenced to V_{II} and V_{IH} with an input voltage swing of V_{SS} to V_{DD} .

Symbol	Parameter	Conditions	V _{DD} =	1.6 V	V _{DD} =	2.4 V	V _{DD} =	3.3 V	$V_{DD} = 5.0 V$		Unit
			Min	Max	Min	Max	Min	Max	Min	Max	
Timing ch	naracteristics (see <u>Fig</u>	ure 21)									
f _{clk(SCL)}	SCL clock frequency		-	2.9	-	4.54	-	5.71	-	8.0	MHz
t _{SCL}	SCL time		345	-	220	-	175	-	125	-	ns
$t_{\text{clk(H)}}$	clock HIGH time		90	-	50	-	45	-	40	-	ns
$t_{\text{clk}(L)}$	clock LOW time		200	-	120	-	95	-	70	-	ns
t _r	rise time	for SCL signal	-	100	-	100	-	50	-	50	ns
t_{f}	fall time	for SCL signal	-	100	-	100	-	50	-	50	ns
$t_{\text{su(CE)}}$	CE set-up time		40	-	35	-	30	-	25	-	ns
$t_{h(CE)}$	CE hold time		40	-	30	-	25	-	15	-	ns
$t_{\text{rec}(CE)}$	CE recovery time		30	-	25	-	20	-	15	-	ns
$t_{\text{w(CE)}}$	CE pulse width	measured after valid subaddress is received	-	0.99	-	0.99	-	0.99	-	0.99	S
t _{su}	set-up time	set-up time for SDI data	10	-	5	-	3	-	2	-	ns
t _h	hold time	hold time for SDI data	40	-	15	-	10	-	5	-	ns
t _{d(R)SDO}	SDO read delay time	bus load = 50 pF	-	190	-	108	-	85	-	60	ns
t _{dis(SDO)}	SDO disable time	no load value; bus will be held up by bus capacitance; use RC time constant with application values	-	70	-	45	-	40	-	27	ns
$t_{t(SDI\text{-}SDO)}$	transition time from SDI to SDO	to avoid bus conflict	0	-	0	-	0	-	0	-	ns

14. Application information

14.1 Quartz frequency adjustment

14.1.1 Method 1: fixed OSCI capacitor

By evaluating the average capacitance necessary for the application layout, a fixed capacitor can be used. The frequency is best measured via the 32.768 kHz signal available after power-on at pin CLKOUT. The frequency tolerance depends on the quartz crystal tolerance, the capacitor tolerance, and the device-to-device tolerance. Average deviations of less than ± 5 minutes per year can easily be achieved.

14.1.2 Method 2: OSCI trimmer

Using the 32.768 kHz signal available after power-on at pin CLKOUT, fast setting of a trimmer is possible.

14.1.3 Method 3: OSCO output

Direct measurement of OSCO out (accounting for test probe capacitance).

15. Package outline

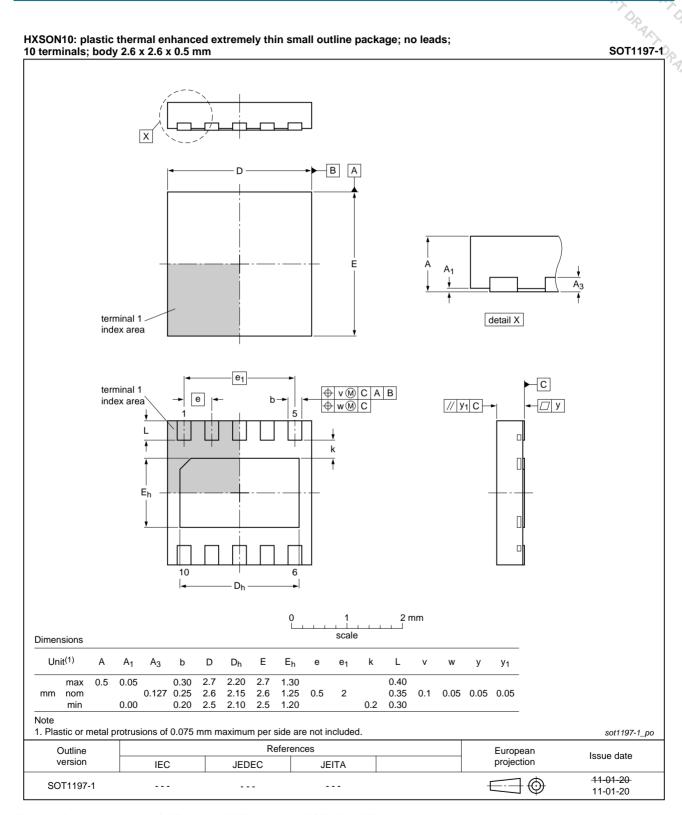


Fig 23. Package outline SOT1197-1 (HXSON10) of PCF85063BTL

Fig 24. Three dimensional package drawing of PCF85063BTL (HXSON10)

16. Handling information

All input and output pins are protected against ElectroStatic Discharge (ESD) under normal handling. When handling Metal-Oxide Semiconductor (MOS) devices ensure that all normal precautions are taken as described in *JESD625-A*, *IEC 61340-5* or equivalent standards.

17. Soldering of SMD packages

This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note *AN10365* "Surface mount reflow soldering description".

17.1 Introduction to soldering

Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization.

17.2 Wave and reflow soldering

Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following:

- Through-hole components
- Leaded or leadless SMDs, which are glued to the surface of the printed circuit board

Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered, due to an increased probability of bridging.

The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable.

Key characteristics in both wave and reflow soldering are:

Board specifications, including the board finish, solder masks and vias

- Package footprints, including solder thieves and orientation
- The moisture sensitivity level of the packages
- Package placement
- Inspection and repair
- Lead-free soldering versus SnPb soldering

17.3 Wave soldering

Key characteristics in wave soldering are:

- Process issues, such as application of adhesive and flux, clinching of leads, board transport, the solder wave parameters, and the time during which components are exposed to the wave
- Solder bath specifications, including temperature and impurities

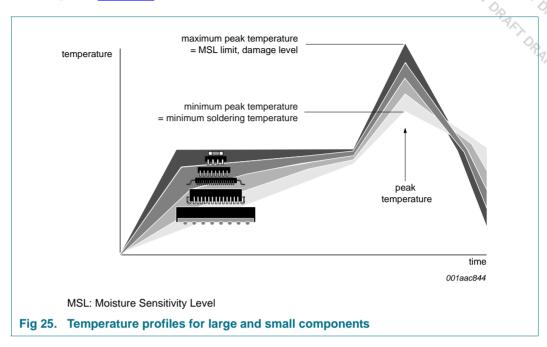
17.4 Reflow soldering

Key characteristics in reflow soldering are:

- Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see <u>Figure 25</u>) than a SnPb process, thus reducing the process window
- Solder paste printing issues including smearing, release, and adjusting the process window for a mix of large and small components on one board
- Reflow temperature profile; this profile includes preheat, reflow (in which the board is
 heated to the peak temperature) and cooling down. It is imperative that the peak
 temperature is high enough for the solder to make reliable solder joints (a solder paste
 characteristic). In addition, the peak temperature must be low enough that the
 packages and/or boards are not damaged. The peak temperature of the package
 depends on package thickness and volume and is classified in accordance with
 Table 43 and 44

Table 43. SnPb eutectic process (from J-STD-020C)

Package thickness (mm)	Package reflow temperature (°C)			
	Volume (mm³)			
	< 350	≥ 350		
< 2.5	235	220		
≥ 2.5	220	220		


Table 44. Lead-free process (from J-STD-020C)

Package thickness (mm)	Package reflow temperature (°C)				
	Volume (mm³)				
	< 350	350 to 2000	> 2000		
< 1.6	260	260	260		
1.6 to 2.5	260	250	245		
> 2.5	250	245	245		

Moisture sensitivity precautions, as indicated on the packing, must be respected at all times.

Studies have shown that small packages reach higher temperatures during reflow soldering, see Figure 25.

For further information on temperature profiles, refer to Application Note *AN10365* "Surface mount reflow soldering description".

18. Abbreviations

Table 45. Abbreviations

14510 101 71551	
Acronym	Description
BCD	Binary Coded Decimal
CMOS	Complementary Metal Oxide Semiconductor
ESD	ElectroStatic Discharge
HBM	Human Body Model
I ² C	Inter-Integrated Circuit
IC	Integrated Circuit
LSB	Least Significant Bit
MM	Machine Model
MSB	Most Significant Bit
MSL	Moisture Sensitivity Level
PCB	Printed-Circuit Board
POR	Power-On Reset
RTC	Real-Time Clock
SCL	Serial CLock line
SDA	Serial DAta line
SMD	Surface Mount Device

19. References

- [1] AN10365 Surface mount reflow soldering description
- [2] AN10366 HVQFN application information
- [3] IEC 60134 Rating systems for electronic tubes and valves and analogous semiconductor devices
- [4] IEC 61340-5 Protection of electronic devices from electrostatic phenomena
- [5] IPC/JEDEC J-STD-020 Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices
- [6] JESD22-A114 Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)
- [7] **JESD22-C101** Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components
- [8] JESD78 IC Latch-Up Test
- [9] JESD625-A Requirements for Handling Electrostatic-Discharge-Sensitive (ESDS) Devices
- [10] NX3-00092 NXP store and transport requirements
- [11] SNV-FA-01-02 Marking Formats Integrated Circuits

20. Revision history

Table 46. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
PCF85063BTL_0.04	20120404	Objective data sheet	-	PCF85063BTL_0.03
PCF85063BTL_0.03	20111110	Objective data sheet	-	PCF85063BTK_0.02
PCF85063BTK_0.02	20110513	Objective data sheet	-	PCF85063BTK_0.01
PCF85063BTK_0.01	20110420	Objective data sheet	-	-

21. Legal information

21.1 Data sheet status

NXP Semiconductors		PCF85063BTL		
		Tiny Real-Time Clock/calendar with alarm function and SPI-bus		
04 1 11 6	4.			
21. Legal information		PAN RAN RAN		
21.1 Data sheet	status	ORAKT DA ORAKT DA		
Document status[1][2]	Product status[3]	Definition		
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.		
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.		
Product [short] data sheet	Production	This document contains the product specification.		

- Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status [3] information is available on the Internet at URL http://www.nxp.com

21.2 **Definitions**

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

21.3 Disclaimers

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

21.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

22. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

23. Tables

Table 1.	Ordering information2
Table 2.	Marking codes
Table 3.	Pin description
Table 4.	Register overview4
Table 5.	Control_1 - control and status register 1
	(address 00h) bit description5
Table 6.	First increment of time circuits after STOP bit
	release
Table 7.	Register reset values
Table 8.	Control_2 - control and status register 2
	(address 01h) bit description9
Table 9.	Effect of bits MI and HMI on INT generation10
Table 10.	CLKOUT frequency selection11
Table 11.	Offset - offset register (address 02h) bit
	description
Table 12.	Offset values
Table 13.	
Table 14.	Effect of correction pulses for MODE = 013
Table 15.	Correction pulses for MODE = 114
Table 16.	Effect of correction pulses for MODE = 1 14
Table 17.	RAM_byte - 8 bit RAM register (address 03h) bit
	description
Table 18.	Seconds - seconds register (address 04h) bit
Table 10.	description
Table 19.	· · · · · · · · · · · · · · · · · · ·
Table 19.	
Table 20.	description
Table 21.	•
Table 21.	Hours - hours register (address 06h) bit description
Table 22.	•
Table 22.	
Table 00	18
Table 23.	Weekdays - weekdays register (address 08h) bit
T-1-1- 04	description
Table 24.	3
Table 25.	Months - months register (address 09h) bit
	description
Table 26.	3
Table 27.	, , ,
Table 28.	
	(address 0Bh) bit description
Table 29.	Minute_alarm - minute alarm register
	(address 0Ch) bit description
Table 30.	=
	bit description
Table 31.	Day_alarm - day alarm register (address 0Eh) bit
	description
Table 32.	Weekday_alarm - weekday alarm register
	(address 0Fh) bit description
Table 33.	Timer_value - timer value register (address 10h)
	bit description24
Table 34.	Timer_mode - timer control register (address 11h)
	bit description24
Table 35.	Timer clock frequency and timer durations25
	First period delay for timer counter value n 26
	INT operation[1]
	Serial interface

	Command byte definition	
Table 40.	Limiting values	29
Table 41.	Static characteristics	30
Table 42.	SPI-bus characteristics	33
Table 43.	SnPb eutectic process (from J-STD-020C)	38
Table 44.	Lead-free process (from J-STD-020C)	38
Table 45.	Abbreviations	39
Table 46.	Revision history	40

24. Figures

Fig 1.	Block diagram of PCF85063BTL
Fig 2.	Pin configuration for HXSON10 (PCF85063BTL) .3
Fig 3.	STOP bit functional diagram6
Fig 4.	STOP bit release timing
Fig 5.	Software reset command8
Fig 6.	Interrupt scheme9
Fig 7.	INT example for MI10
Fig 8.	Offset calibration calculation workflow15
Fig 9.	OS flag17
Fig 10.	Data flow for the time function
Fig 11.	Access time for read/write operations 20
Fig 12.	Alarm function block diagram
Fig 13.	General countdown timer behavior
Fig 14.	Data transfer overview27
Fig 15.	Serial bus write example
Fig 16.	Serial bus read example
Fig 17.	Device diode protection diagram
Fig 18.	I _{DD} as a function of temperature
Fig 19.	I_{DD} with respect to V_{DD} when CLKOUT active32
Fig 20.	Oscillator frequency variation with respect to V_{DD} .
	32
Fig 21.	SPI-bus timing
Fig 22.	Application diagram
Fig 23.	Package outline SOT1197-1 (HXSON10) of
	PCF85063BTL36
Fig 24.	Three dimensional package drawing of
	PCF85063BTL (HXSON10)37
Fig 25.	Temperature profiles for large and small
	components

25. Contents

					4
1	General description	. 1	8.6.3.1	Countdown timer interrupts	26
2	Features and benefits	. 1	9	SPI-bus interface	27
3	Applications	. 1	10	Internal circuitry	29
4	Ordering information	. 2	11	Limiting values	29
5	Marking	. 2	12	Static characteristics	30
6	Block diagram	. 2	13	Dynamic characteristics	33
7	Pinning information	. 3	14	Application information	3
7.1	Pinning	. 3	14.1	Quartz frequency adjustment	3
7.2	Pin description	. 3	14.1.1	Method 1: fixed OSCI capacitor	3
8	Functional description	. 4	14.1.2	Method 2: OSCI trimmer	
8.1	Register organization	. 4	14.1.3	Method 3: OSCO output	
8.2	Control registers	. 5	15	Package outline	36
8.2.1	Register Control_1		16	Handling information	37
8.2.1.1	EXT_TEST: external clock test mode		17	Soldering of SMD packages	3
8.2.1.2	STOP: RTC clock stop		17.1	Introduction to soldering	
8.2.1.3	SR: Software reset		17.2	Wave and reflow soldering	
8.2.2 8.2.2.1	Register Control_2		17.3	Wave soldering	
8.2.2.1	Alarm interrupt		17.4	Reflow soldering	38
8.2.2.3	TF: timer flag		18	Abbreviations	39
8.2.2.4	COF[2:0]: Clock output frequency		19	References	40
8.2.3	Register Offset		20	Revision history	4(
8.2.3.1	Correction when MODE = 0		21	Legal information	
8.2.3.2	Correction when MODE = 1		21.1	Data sheet status	
8.2.3.3	Offset calibration workflow	15	21.2	Definitions	
8.2.4	Register: RAM_byte	15	21.3	Disclaimers	
8.3	Time and date registers		21.4	Trademarks	42
8.3.1	Register Seconds		22	Contact information	42
8.3.1.1	OS: Oscillator stop		23	Tables	43
8.3.2	Register Minutes		24	Figures	
8.3.3 8.3.4	Register Hours		25	Contents	
8.3.5	Register Days		23	Contents	7
8.3.6	Register Months				
8.3.7	Register Years				
8.4	Setting and reading the time				
8.5	Alarm registers				
8.5.1	Register Second_alarm				
8.5.2	Register Minute_alarm	21			
8.5.3	Register Hour_alarm	21			
8.5.4	Register Day_alarm	22			
8.5.5	Register Weekday_alarm	22			
8.5.6	Alarm function.				
8.6	Timer registers				
8.6.1	Register Timer_value				
8.6.2 8.6.3	Register Timer_mode				
0.0.3	TIME TUNCTONS	4			

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.