January 5, 2012

LM48901

Boomer® Audio Power Amplifier Series

Quad Class D Spatial Array

General Description

The LM48901 is a quad Class D amplifier that utilizes Texas Instruments' proprietary spatial sound processor to create an enhanced sound stage for portable multimedia devices. The Class D output stages feature Texas Instruments' edge rate control (ERC) PWM architecture that significantly reduces RF emissions while preserving audio quality and efficiency.

The LM48901's flexible I²S interface is compatible with standard serial audio interfaces. A stereo differential-input ADC gives the device the ability to process analog stereo audio signals.

The LM48901 is configured through an I²C compatible interface and is capable of delivering 2.8W/channel of continuous output power into an 4Ω load with less than 10% THD+N. A 2.1 mode pairs two output drivers in parallel, increasing current drive for 4Ω loads.

Output short circuit and thermal overload protection prevent the device from being damaged during fault conditions. Superior click and pop suppression eliminates audible transients on power-up/down and during shutdown. The LM48901 is available in space saving microSMD and LLP packages.

Key Specifications

■ SNR (A-Weighted)	87dBA (typ)
■ Output Power/channel, PV _{DD} = 5V	
$R_L = 8\Omega$, THD+N $\leq 10\%$	1.7W (typ)
$R_L = 4\Omega$, THD+N $\leq 10\%$	2.8W (typ)
■ THD+N	0.06% (typ)
■ Efficiency/Channel	89% (typ)
■ PSRR at 217Hz	71dB (typ)
■ Shutdown current	1μA (typ)

Features

- Spatial Sound Processing
- I²S Compatible Input
- Differential-Input Stereo ADC
- Edge Rate Control Reduces EMI while Preserving Audio Quality and Efficiency
- Paralleled Output Mode
- Short Circuit and Thermal Overload Protection
- Minimum external components
- Click and Pop suppression
- Micro-power shutdown
- Available in space-saving micro SMD and LLP packages

Applications

- Laptops
- Tablets
- Desktop Computers
- Sound Bars
- Multimedia Devices
- MP3 Player Accessories
- Docking Stations

Boomer® is a registered trademark of National Semiconductor Corporation.

Typical Application

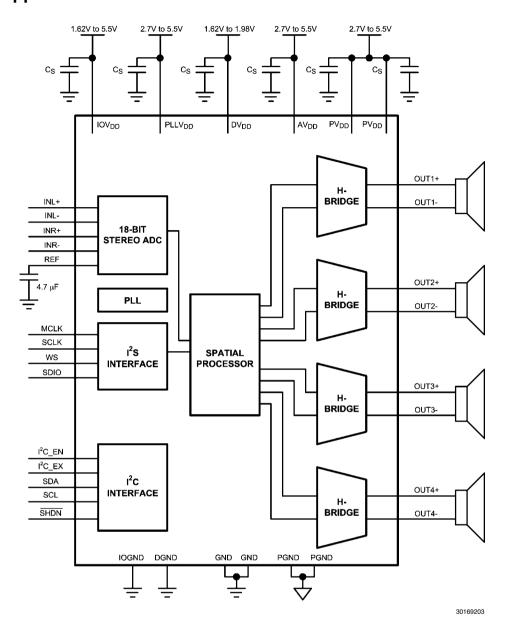


FIGURE 1. Typical Audio Amplifier Application Circuit

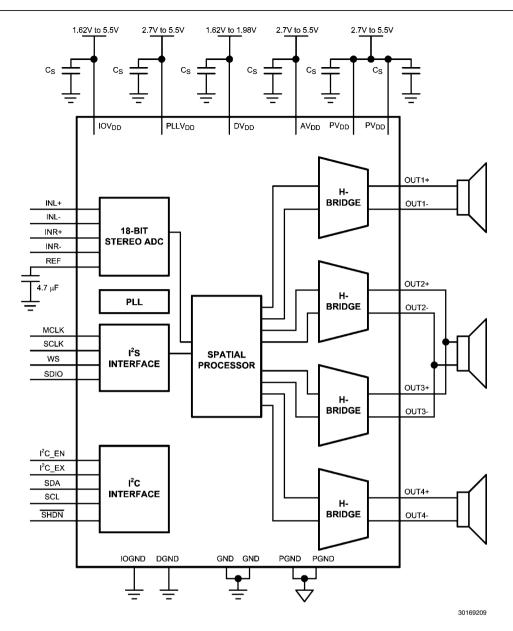
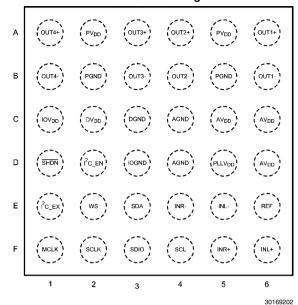
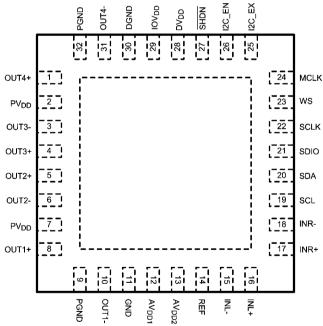



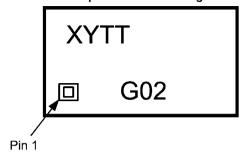
FIGURE 2. Channel Audio Amplifier Application Circuit

Only OUT2 and OUT3 can be configured in parallel. OUT1 and OUT4 cannot be configured in parallel.


Connection Diagrams

micro SMD Package

Top View Order Number LM48901RL See NS Package Number RLA36JSA


SQ Package

Top View Order Number LM48901SQ See NS Package Number SQA32A

30169201

36-Bump micro SMD Marking

Top View
XY = Date code
TT = Die traceability
G = Boomer Family
02 = LM48901RL

301692a5

Ordering Information

Ordering Information Table

Order Number	Package	Package Drawing Number	Transport Media	MSL Level	Green Status n
LM48901RL	36-bump microSMD	RLA36JSA	250 units on tape and reel	1	RoHS & no Sb/Br
LM48901RLX	36-bump microSMD	RLA36JSA	1000 units on tape and reel	1	RoHS & no Sb/Br
LM48901SQ	32-pin LLP	SQA32A	1000 units on tape and reel	1	RoHS & no Sb/Br
LM48901SQE	32-pin LLP	SQA32A	250 units on tape and reel	1	RoHS & no Sb/Br
LM48901SQX	32-pin LLP	SQA32A	4500 units on tape and reel	1	RoHS & no Sb/Br

TABLE 1. Pin Descriptions

BUMP	PIN	NAME	DESCRIPTION
A1	1	OUT4+	Channel 4 Non-Inverting Output
A2, A5	2, 7	PVDD	Class D Power Supply
A3	4	OUT3+	Channel 3 Non-Inverting Output. Connect to OUT2+ in Parallel Mode.
A4	5	OUT2+	Channel 2 Non-Inverting Output. Connect to OUT3+ in Parallel Mode.
A6	8	OUT1+	Channel 1 Non-Inverting Output
B1	31	OUT4-	Channel 4 Inverting Output
B2, B5	9, 32	PGND	Power Ground
В3	3	OUT3-	Channel 3 Inverting Output. Connect to OUT2- in Parallel Mode.
B4	6	OUT2-	Channel 2 Inverting Output. Connect to OUT3- in Parallel Mode.
В6	10	OUT1-	Channel 1 Inverting Output
C1	29	IOVDD	Digital Interface Power Supply
C2	28	DVDD	Digital Power Supply
C3	30	DGND	Digital Ground
C4	11	AGND1	Modulator Analog Ground
C5	_	AVDD3	ADC Reference Power Supply
C6	12	AVDD1	Modulator Analog Power Supply. Set to same voltage as PV _{DD} for maximum headroom.
D1	27	SHDN	Active Low Shutdown. Connect to V _{DD} for normal operation.
D2	26	I2C_EN	I ² C Enable Input
D3	30	IOGND	Digital Interface Ground
D4	_	AGND2	ADC Analog Ground
D5	_	PLLV _{DD}	PLL Power Supply
D6	13	AVDD2	ADC Analog Power Supply
E1	25	I ² C_EX	I ² C Enable Output
E2	23	ws	I ² S Word Select Input
E3	20	SDA	I ² C Serial Data Input
E4	18	INR-	Right Channel Inverting Analog Input
E5	15	INL-	Left Channel Inverting Analog Input
E6	14	REF	ADC Reference Bypass
F1	24	MCLK	Master Clock
F2	22	SCLK	Serial Clock Input
F3	21	SDIO	I ² S Serial Data Input/Output
F4	19	SCL	I ² C Clock Input
F5	17	INR+	Right Channel Non-Inverting Analog Input
F6	16	INL+	Left Channel Non-Inverting Analog Input

Absolute Maximum Ratings (Note 1, Note

If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.

Supply Voltage

AV_{DD} , PV_{DD} , PLV_{DD} , IOV_{DD} (<i>Note 1</i>)	6.0V
Supply Voltage, DV _{DD} (Note 1)	2.2V
Storage Temperature	-65°C to + 150°C
Input Voltage	$-0.3V$ to $V_{DD} + 0.3V$
Power Dissipation (Note 3)	Internally limited
ESD Susceptibility (Note 4)	2000V
ESD Susceptibility (Note 5)	150V
Junction Temperature	150°C

θ_{JA} (microSMD)	26°C/W
θ_{JA} (LLP)	26°C/W
θ_{JC} (LLP)	2.6°C/W

Operating Ratings

Temperature Range

$T_{MIN} \le T_A \le T_{MAX}$	-40°C ≤ T _A ≤ +85°C
Supply Voltage	
AV_DD	$2.7V \le AV_{DD} \le 5.5V$
PV_{DD}	$2.7V \le PV_{DD} \le 5.5V$
PLLV _{DD}	$2.7V \le PLLV_{DD} \le 5.5V$
IOV _{DD}	$1.62 \text{V} \le \text{IOV}_{\text{DD}} \le 5.5 \text{V}$
DV_DD	$1.62V \le DV_{DD} \le 1.98V$

Electrical Characteristics $PV_{DD} = AV_{DD} = 5V$, $IOV_{DD} = PLLV_{DD} = 3.3V$, $DV_{DD} = 1.8$ (Note 2, Note 8)

The following specifications apply for A_V = 0dB, C_{REF} = 4.7 μ F, R_L = 8 Ω , f = 1kHz, unless otherwise specified. Limits apply for T_A = 25°C.

	Parameter			LM48901		11
Symbol		Conditions	Min (Note 8)	Typ (Note 7)	Max (Note 8)	Units (Limits)
AV _{DD}	Analog Supply Voltage Range	(Note 9)	2.7		5.5	V
PV _{DD}	Amplifier Supply Voltage Range	(Note 9)	2.7		5.5	V
PLLV _{DD}	PLL Supply Voltage Range		2.7		5.5	V
IOV _{DD}	Interface Supply Voltage Range		1.62		5.5	V
DV _{DD}	Digital Supply Voltage Range		1.62		1.98	V
Δ1	Analog Ovice cont Supply Current	LM48901RL		17.5	21	mA
Al_DD	Analog Quiescent Supply Current	LM48901SQ		19.2	22.3	mA
PI _{DD}	Amplifier Quiescent Supply Current	$R_L = 8\Omega$		5.25	8.25	mA
PLLI _{DD}	PLL Quiescent Supply Current	LM48901RL		1.5		mA
DI _{DD}	Quiescent Digital Power Supply Current			5.5	6.2	mA
I _{SD}	Shutdown Current (Analog, Amplifier and PLL Supplies)	Shutdown Enabled		1	5	μΑ
DI _{STBY}	Digital Standby Current			30		μA
DI _{SD}	Digital Shutdown Current	Shutdown Enabled		2		μA
V _{os}	Differential Output Offset Voltage	V _{IN} = 0	-17	0	17	mV
	M/-l Tim-	Power Up (Device Initialization)		150		ms
T_{WU}	Wake-up Time	From Shutdown		30		ms
f _{SW}	Switching Frequency	f _S = 48kHz		384		kHz

			LM48901			Units	
Symbol	Parameter	Conditions	Min	Typ	Max	(Limits	
		D 40 TUD N 400/	(Note 8)	(Note 7)	(Note 8)		
		$R_L = 4\Omega$, THD+N = 10% f = 1kHz, 22kHz BW					
		V _{DD} = 5V		2.8		W	
		$V_{DD} = 3.6V$		1.4		W	
				1.4		l vv	
		$R_L = 4\Omega$, THD+N = 1% f = 1kHz, 22kHz BW					
		$V_{DD} = 5V$		2.2		W	
		$V_{DD} = 3.6V$		1.2		W	
P_0	Output Power/Channel	$R_L = 8\Omega$, THD+N = 10%		1.2		•••	
		f = 1kHz, 22kHz BW					
		V _{DD} = 5V		1.7		W	
		V _{DD} = 3.6V		825		mW	
		$R_L = 8\Omega$, THD+N = 1%					
		f = 1kHz, 22kHz BW					
		V _{DD} = 5V	1.0	1.3		W	
		V _{DD} = 3.6V		650		mW	
		$R_1 = 4\Omega$, THD+N = 10%, f = 1kHz	, 22kHz BW	Į.		Į.	
		V _{DD} = 5V	,	3.2		W	
	Output Power (Parallel Mode)	V _{DD} = 3.6V		1.6		W	
Po	(Note 10)	$R_1 = 4\Omega$, THD+N = 1%, f = 1kHz, 22kHz BW					
		$V_{DD} = 5V$		2.5		w	
		V _{DD} = 3.6V		1.2		W	
THD+N	Total Harmonic Distortion + Noise			0.06		%	
	Total Harmonic Biotoricon Friends	ortion + Noise $P_O = 500$ mW, $f = 1$ kHz, $R_L = 8\Omega$ 0.06 % $V_{RIPPLE} = 200$ mV $_{P-P}$ sine, Inputs AC GND, $C_{IN} = 1$ μ F					
		$f_{RIPPLE} = 217Hz$, Applied to PV_{DD}	io and, o _{in}	67		dB	
		$f_{RIPPLE} = 217Hz$, Applied to DV_{DD}		54		dB	
PSRR	Power Supply Rejection Ratio	$f_{RIPPLE} = 1kHz$, Applied to PV_{DD}		66		dB	
ronn	(ADC Path)	$f_{RIPPLE} = 1 \text{kHz}$, Applied to PV_{DD}		54		dB	
		f _{RIPPLE} = 10kHz, Applied to PV _{DD}		57		dB	
		$f_{RIPPLE} = 10kHz$, Applied to DV_{DD}	1004BEC	52		dB	
		$V_{RIPPLE} = 200 \text{mV}_{P-P} \text{ sine, Inputs} - f_{RIPPLE} = 217 \text{Hz, Applied to PV}_{DD}$	12000F3	71		40	
						dB	
DCDD	Power Supply Rejection Ratio	f _{RIPPLE} = 217Hz, Applied to DV _{DD}		58		dB	
PSRR	(I ² S Path)	f _{RIPPLE} = 1kHz, Applied to PV _{DD}		69		dB	
		f _{RIPPLE} = 1kHz, Applied to DV _{DD}		57		dB	
		f _{RIPPLE} = 10kHz, Applied to PV _{DD}		70		dB	
	_	$f_{RIPPLE} = 10kHz$, Applied to DV_{DD}		55		dB	
CMRR	Common Mode Rejection Ratio	$V_{RIPPLE} = 1V_{P-P}, f_{RIPPLE} = 217Hz,$ $A_V = 0dB$		60		dB	
n	Efficiency/Channel	$V_{DD} = 5V, P_{O} = 1.1W$		89		%	
າ 		$V_{DD} = 3.6V, P_{O} = 400mW$		87		%	
า	Efficiency	$V_{DD} = 5V, P_{O} = 1.1W$		87		%	
ባ 	Lindionoy	$V_{DD} = 3.6V, P_{O} = 400mW$		86		%	
SNR	Signal-to-Noise-Ratio	ADC Input, P _O = 1W		85		dB	
J1411	Gignal to 140/30-1 tatio	I ² S Input, P _O = 1W		87		dB	

				11-24-		
Symbol	Parameter	Conditions	Min (Note 8)	Typ (Note 7)	Max (Note 8)	Units (Limits)
CMVR	Common Mode Input Voltage Range			5		V
ε _{OS}	Output Noise	Inputs AC GND, A-weighted, A _V = 0dB		130		μV
		I ² S Input		72		μV
X _{TALK}	Crosstalk			75		dB

I2C Interface Characteristics (Note 1, Note 2)

The following specifications apply for $R_{PU}=1k\Omega$ to IOV_{DD} , unless otherwise specified. Limits apply for $T_A=25^{\circ}C$.

				LM48901		
Symbol	Parameter	Conditions	Min (Note 7)	Typ (<i>Note 6</i>)	Max (Note 7)	Units
VIH	Logic Input High Threshold	SDA, SCL	0.7*IOV _{DD}			V
VIL	Logic Input Low Threshold	SDA, SCL		300		mV
VOL	Logic Output Low Threshold	SDA, ISDA = 3.6mA			0.35	V
IOH	Logic Output High Current	SDA, SCL			2	uA
	SCL Frequency				400	kHz
1	Hold Time (repeated START Condition)		0.6			μs
2	Clock Low Time		1.3			μs
3	Clock High Time		600			ns
4	Setup Time for Repeated START condition		600			ns
5	Data Hold Time	Output	300		900	ns
6	Data Setup Time		100			ns
7	SDA Rise Time				300	ns
8	SDA Fall Time				300	ns
9	Setup Time for STOP Condition		600			ns
10	Bus Free Time Between STOP and START Condition		1.3			μs

I2S Timing Characteristics (Note 2, Note 8)

The following specifications apply for $DV_{DD} = 1.8V$, unless otherwise specified. Limits apply for $T_A = 25$ °C.

		Conditions		LM48901		Units (Limits)
Symbol	Parameter		Min (Note 7)	Typ (<i>Note 6</i>)	Max (Note 7)	
t _{MCLKL}	MCLK Pulse Width Low		16			ns
t _{MCLKH}	MCLK Pulse Width High		16			ns
t _{MCLKY}	MCLK Period		27			ns
t _{BCLKR}	SCLK rise time				3	ns
t _{BCLKCF}	SCLK fall time				3	ns
t _{BCLKDS}	SCLK Duty Cycle			50		%
T _{DL}	LRC Propagation Delay from SCLK falling edge				10	ns
T _{DST}	DATA Setup Time to SCLK Rising Edge		10			ns
T _{DHT}	DATA Hold Time from SCLK Rising Edge		10			ns

Note 1: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur, including inoperability and degradation of device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating Conditions indicate conditions at which the device is functional and the device should not be operated beyond such conditions. All voltages are measured with respect to the ground pin, unless otherwise specified.

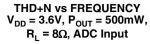
Note 2: The *Electrical Characteristics* tables list guaranteed specifications under the listed *Recommended Operating Conditions* except as otherwise modified or specified by the *Electrical Characteristics Conditions* and/or Notes. Typical specifications are estimations only and are not guaranteed.

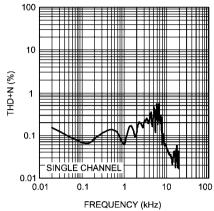
Note 3: The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{JMAX} , θ_{JA} , and the ambient temperature, T_A . The maximum allowable power dissipation is $P_{DMAX} = (T_{JMAX} - T_A) / \theta_{JA}$ or the given in Absolute Maximum Ratings, whichever is lower.

Note 4: Human body model, applicable std. JESD22-A114C.

Note 5: Machine model, applicable std. JESD22-A115-A.

Note 6: Typical values represent most likely parametric norms at T_A = +25°C, and at the *Recommended Operation Conditions* at the time of product characterization and are not guaranteed.

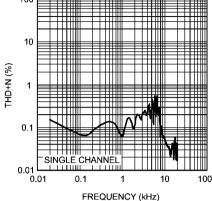

Note 7: Datasheet min/max specification limits are guaranteed by design, test, or statistical analysis.


Note 8: R_L is a resistive load in series with two inductors to simulate an actual speaker load. For R_L = 8 Ω , the load is 15 μ H+8 Ω +15 μ H. For R_L = 4 Ω , the load is 15 μ H+4 Ω +15 μ H.

Note 9: Maintain PV_{DD} and AV_{DD} at the same voltage potential.

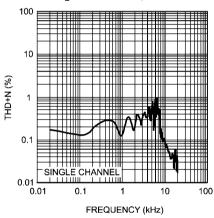
Note 10: Only OUT2 and OUT3 can be configured in Parallel Mode.

Typical Performance Characteristics

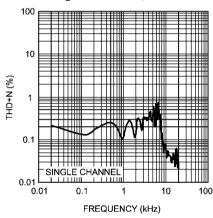

30169220

10

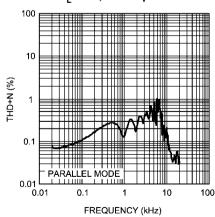
THD+N vs FREQUENCY


 $V_{DD} = 5V, P_{OUT} = 925 \text{ mW},$

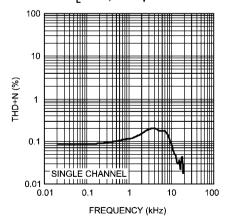
 $R_1 = 8\Omega$, ADC Input


30169221

THD+N vs FREQUENCY $V_{DD} = 3.6V, P_{OUT} = 7505 \text{ mW},$ $R_L = 4\Omega, ADC \text{ Input}$

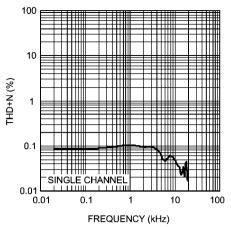

30169224

THD+N vs FREQUENCY $V_{DD} = 5V$, $P_{OUT} = 1.3W$, $R_L = 4\Omega$, ADC Input

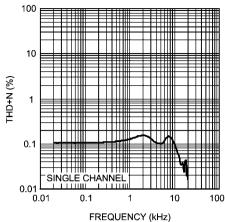


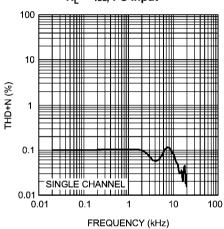
30169223


THD+N vs FREQUENCY $V_{DD} = 3.6V, P_{OUT} = 900mW,$ $R_L = 4\Omega$, ADC Input

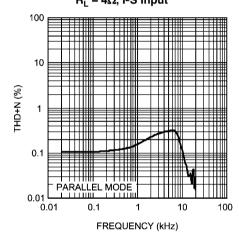


THD+N vs FREQUENCY $V_{DD} = 3.6V, P_{OUT} = 450mW,$ $R_L = 8\Omega$, I²S Input

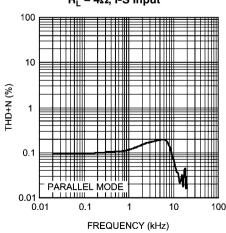

30169226


30169227

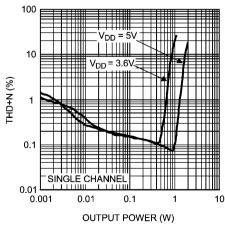
THD+N vs FREQUENCY V_{DD} = 3.6V, P_{OUT} = 750mW, R_L = 4Ω , I²S Input


30169282

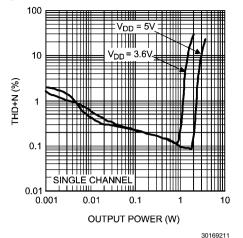
THD+N vs FREQUENCY $\begin{aligned} V_{DD} &= 5V, \, P_{OUT} = 1.65W, \\ R_L &= 4\Omega, \, l^2S \, Input \end{aligned}$


30169283

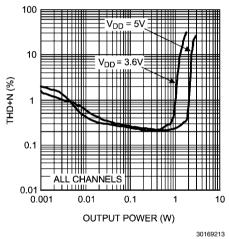
THD+N vs FREQUENCY V_{DD} = 3.6V, P_{OUT} = 850mW, R_L = 4Ω , I²S Input


30169284

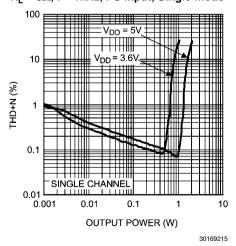
THD+N vs FREQUENCY $V_{DD} = 5V$, $P_{OUT} = 1.8W$, $R_{I} = 4\Omega$, I²S Input

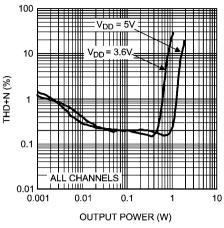

30169285

THD+N vs OUTPUT POWER $R_L = 8\Omega$, f = 1kHz, ADC Input

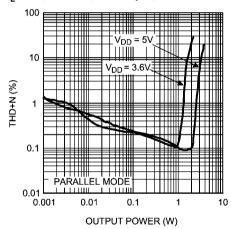


30169210

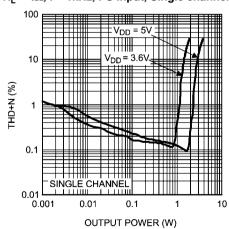

THD+N vs OUTPUT POWER $\label{eq:RL} \textbf{R}_{L} = 4\Omega, \, f = 1 \text{kHz}, \, \text{ADC Input, Single channel}$


THD+N vs OUTPUT POWER $\label{eq:RL} \textbf{R}_{L} = 4\Omega, \, f = 1 \text{kHz}, \, \text{ADC Input, All channels}$

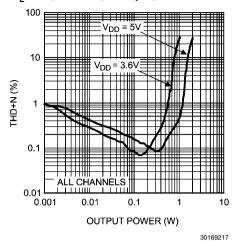
THD+N vs OUTPUT POWER $R_L = 8\Omega, \, f = 1 \text{kHz}, \, l^2 S \, \text{Input, Single mode}$



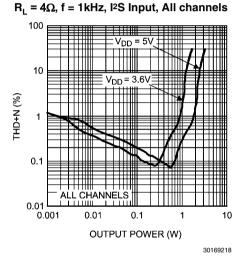
THD+N vs OUTPUT POWER $R_L = 8\Omega$, f = 1kHz, ADC Input


30169212

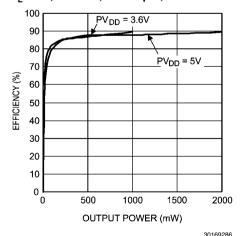
THD+N vs OUTPUT POWER $R_{_L} = 4\Omega, \, f = 1 \text{kHz}, \, \text{ADC Input, Parallel mode}$

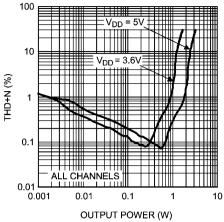

30169214

THD+N vs OUTPUT POWER $R_{L} = 4\Omega, \, f = 1 \text{kHz}, \, l^2 S \, \text{Input, Single channel}$

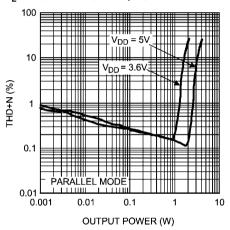


30169216

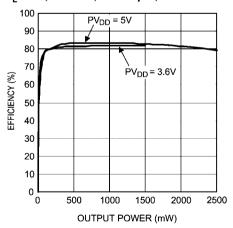

THD+N vs OUTPUT POWER $R_1 = 8\Omega$, f = 1kHz, I^2S Input, All channels


THD+N vs OUTPUT POWER

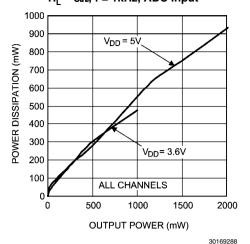
EFFICIENCY vs OUTPUT POWER $R_L = 8\Omega, \, f = 1 \text{kHz}, \, \text{ADC Input, All channels}$



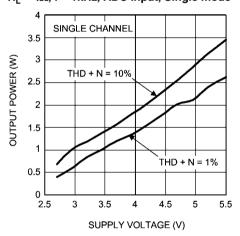
THD+N vs OUTPUT POWER $R_L = 4\Omega, \, f = 1 kHz, \, l^2 S \, Input, \, All \, channels$


30169218

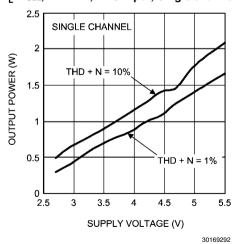
THD+N vs OUTPUT POWER $R_1 = 4\Omega$, f = 1kHz, I^2 S Input, Parallel mode

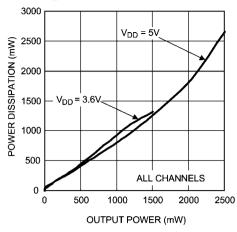

30169219

EFFICIENCY vs OUTPUT POWER R_L = $4\Omega,\,f$ = 1kHz, ADC Input, All channels

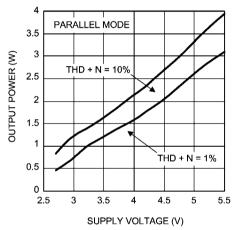


30169287

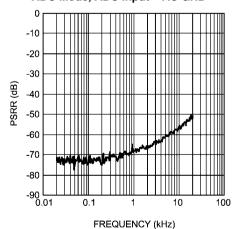

POWER DISSIPATION vs OUTPUT POWER $R_1 = 8\Omega, f = 1 \text{kHz}, ADC \text{ Input}$


OUTPUT POWER vs SUPPLY VOLTAGE $R_1 = 4\Omega$, f = 1kHz, ADC Input, Single mode

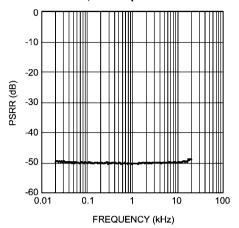
OUTPUT POWER vs SUPPLY VOLTAGE $R_L = 8\Omega$, f = 1kHz, ADC Input, Single channel



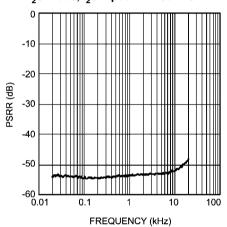
POWER DISSIPATION vs OUTPUT POWER $R_1 = 4\Omega, f = 1 \text{kHz}, ADC \text{ Input}$


30169289

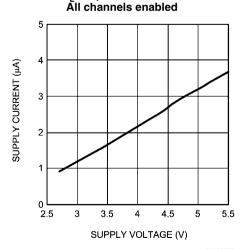
OUTPUT POWER vs SUPPLY VOLTAGE $R_1 = 4\Omega$, f = 1kHz, ADC Input, Parallel mode


30169291

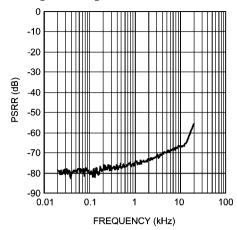
$\begin{array}{c} \text{PSRR vs FREQUENCY} \\ \text{PV}_{\text{DD}} = 5\text{V, V}_{\text{RIPPLE}} = 200\text{mV}_{\text{P-P}}, \, \text{R}_{\text{L}} = 8\Omega, \\ \text{ADC Mode, ADC input} = \text{AC GND} \end{array}$


301692a8

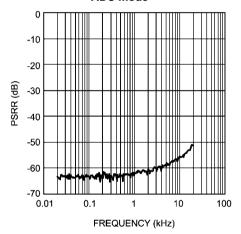
$\begin{array}{l} \text{PSRR vs FREQUENCY} \\ \text{DV}_{\text{DD}} = 1.8\text{V}, \text{V}_{\text{RIPPLE}} = 200\text{mV}_{\text{P.P.}}, \text{R}_{\text{L}} = 8\Omega, \\ \text{ADC Mode, ADC input} = \text{AC GND} \end{array}$


301692a9

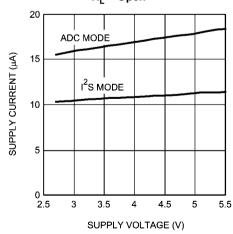
 $\begin{array}{c} \text{PSRR vs FREQUENCY} \\ \text{DV}_{\text{DD}} = 1.8\text{V}, \, \text{V}_{\text{RIPPLE}} = 200\text{mV}_{\text{P-P}}, \, \text{R}_{\text{L}} = 8\Omega, \\ \text{I}_2\text{S mode, I}_2\text{S input} = -120\text{dBFS} \end{array}$


301692b1

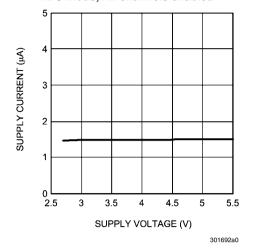
SUPPLY CURRENT vs SUPPLY VOLTAGE (PV $_{\rm DD}$) R $_{\rm L}$ = Open, ADC mode,


30169298

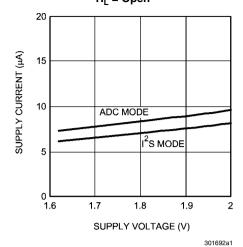
$\begin{array}{c} \text{PSRR vs FREQUENCY} \\ \text{PV}_{\text{DD}} = 5\text{V, V}_{\text{RIPPLE}} = 200\text{mV}_{\text{P.p.}}, \, \text{R}_{\text{L}} = 8\Omega, \\ \text{I}_{2}\text{S mode, I}_{2}\text{S input} = -120\text{dBFS} \end{array}$


301692b0

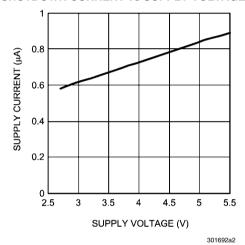
 $\begin{aligned} & \text{PSRR vs FREQUENCY} \\ & \text{V}_{\text{RIPPLE}} = 200 \text{mV}_{\text{P-P}}, \, \text{R}_{\text{L}} = 8 \Omega, \\ & \text{ADC mode} \end{aligned}$

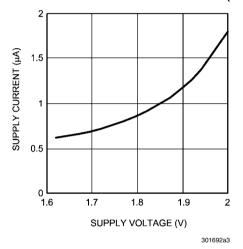

30169297

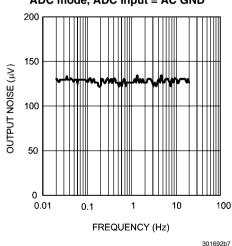
SUPPLY CURRENT vs SUPPLY VOLTAGE (AV $_{\rm DD}$) R $_{\rm I}$ = Open

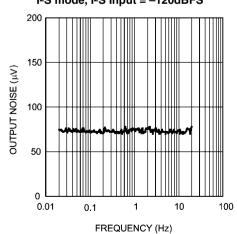


30169299


SUPPLY CURRENT vs SUPPLY VOLTAGE (PLV_{DD}) ADC mode, All channels enabled


SUPPLY CURRENT vs SUPPLY VOLTAGE (DV_{DD}) $R_{i} = Open$


SHUTDOWN CURRENT vs SUPPLY VOLTAGE


SHUTDOWN CURRENT vs SUPPLY VOLTAGE (DV_{DD})

OUTPUT NOISE VS FREQUENCY $PV_{DD} = 5V$, $R_L = 8\Omega$, ADC mode, ADC input = AC GND

OUTPUT NOISE VS FREQUENCY $DV_{DD} = 1.8V$, $R_L = 8\Omega$, I^2S mode, I^2S Input = -120dBFS

301692b8

Application Information

I2C COMPATIBLE INTERFACE

The LM48901 is controlled through an I²C compatible serial interface that consists of a serial data line (SDA) and a serial clock (SCL). The clock and data lines are bi-directional (open drain). The LM48901 can communicate at clock rates up to 400kHz. *Figure 3* shows the I²C interface timing diagram. Data on the SDA line must be stable during the HIGH period of SCL. The LM48901 is a transmit/receive device, and can act

as the I²C master, generating the SCL signal. Each transmission sequence is framed by a START condition and a STOP condition *Figure 4*.

Due to the number of data registers, the LM48901 employs a page mode scheme. Each data write consists of 7, 8 bit data bytes, device address (1 byte), 16 bit register address (2 bytes), and 32 bit register data (4 bytes). Each byte is followed by an acknowledge pulse *Figure 5*. Single byte read and write commands are ignored. The LM48901 device address is 0110000X.

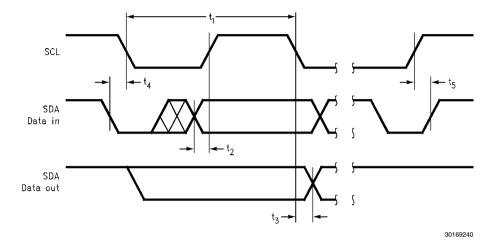


FIGURE 3. I2C Timing Diagram

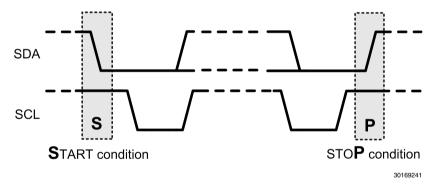


FIGURE 4. Start and Stop Diagram

WRITE SEQUENCE

The example write sequence is shown in *Figure 5*. The START signal, the transition of SDA from HIGH to LOW while SDA is HIGH, is generated, altering all devices on the bus that a device address is being written to the bus.

The 7-bit device address is written to the bus, most significant bit (MSB) first, followed by the R/\overline{W} bit ($R/\overline{W}=0$ indicating the master is writing to the LM48901). The data is latched in on the rising edge of the clock. Each address bit must be stable while SDA is HIGH. After the R/W bit is transmitted, the master device releases SDA, during which time, an acknowledge clock pulse is generated by the slave device. If the LM48901 receives the correct address, the device pulls the SDA line low, generating and acknowledge bit (ACK).

Once the master device registers the ACK bit, the first 8-bit register address word is sent, MSB first [15:8]. Each data bit should be stable while SCL is HIGH. After the first 8-bit register address is sent, the LM48901 sends another ACK bit. Upon receipt of acknowledge, the second 8-bit register address word is sent [7:0], followed by another ACK bit. The register data is sent, 8-bits at a time, MSB first in the following order [7:0], [15:8], [23:16], [31:24]. Each 8-bit word is followed by an ACK, upon receipt of which the successive 8-bit word is sent. Following the acknowledgement of the last register data word [31:24], the master issues a STOP bit, allowing SDA to go high while SDA is high.

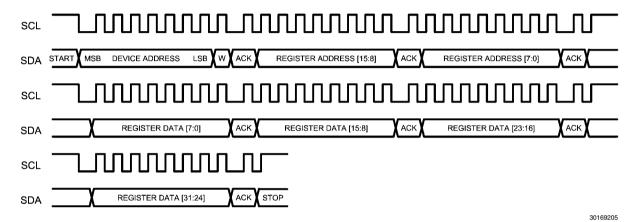


FIGURE 5. Example I²C Write Sequence

READ SEQUENCE

The example read sequence is shown in *Figure 6*. The START signal, the transition of SDA from HIGH to LOW while SDA is HIGH, is generated, altering all devices on the bus that a device address is being written to the bus.

The 7-bit device address is written to the bus, followed by the $R/\overline{W}=0$. After the R/\overline{W} bit is transmitted, the master device releases SDA, during which time, an acknowledge clock pulse is generated by the slave device. If the LM48901 receives the correct address, the device pulls the SDA line low, generating and acknowledge bit (ACK). Once the master device registers the ACK bit, the first 8-bit register address word is sent, MSB first [15:8], followed by and ACK from the

LM48901. Upon receipt of the acknowledge, the second 8-bit register address word is sent [7:0], followed by another ACK bit. Following the acknowledgement of the last register address, the master initiates a REPEATED START, followed by the 7-bit device address, followed by $R/\overline{W}=1$ ($R/\overline{W}=1$ indicating the master wants to read data from the LM48901). The LM48901 sends an ACK, followed by the selected register data. The register data is sent, 8-bits at a time, MSB first in the following order [7:0], [15:8], [23:16], [31:24]. Each 8-bit word is followed by an ACK, upon receipt of which the successive 8-bit word is sent. Following the acknowledgement of the last register data word [31:24], the master issues a STOP bit, allowing SDA to go high while SDA is high.

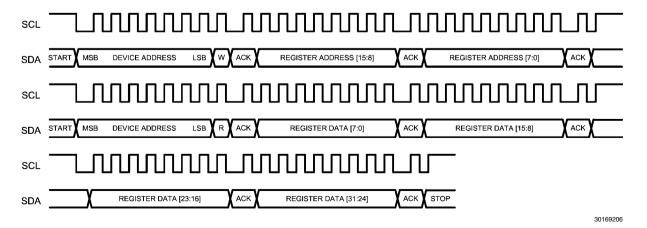


FIGURE 6. Example I2C Read Sequence

12S DATA FORMAT

The LM48901 supports three I²S formats: Normal Mode *Figure 7*, Left Justified Mode *Figure 8*, and Right Justified Mode *Figure 9*. In Normal Mode, the audio data is transmitted MSB first, with the unused bits following the LSB. In Left Justified

Mode, the audio data format is similar to the Normal Mode, without the delay between the LSB and the change in I²S_WS. In Right Justified Mode, the audio data MSB is transmitted after a delay of a preset number of bits.

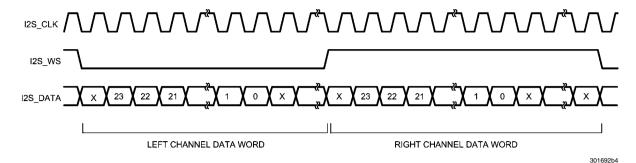


FIGURE 7. I2S Normal Input Format

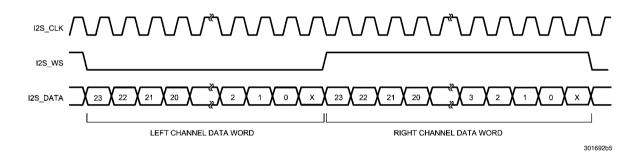


FIGURE 8. I2S Left Justified Input Format

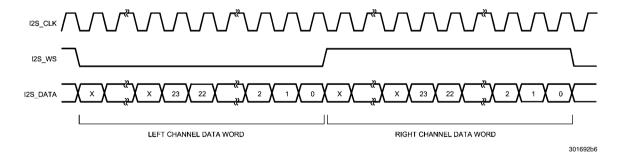



FIGURE 9. I2S Right Justified Input Format

MEMORY ORGANIZATION

The LM48901 memory is organized into three main regions: a 32-bit wide Coefficient Space that holds the spatial coefficients, a 32-bit wide Register Space that holds the device

configuration settings, and a 48-bit wide Audio Sample Space that holds the current audio data sampled from either the ADCs or the I2S interface, organized as shown in *Figure 10*.

30169207

FIGURE 10. LM48901 Memory Organization

COEFFICIENT MEMORY

The device must be in Debug mode in order to write to the Coefficient memory. Set Bit 7 (DBG_ENABLE) in Filter Debug

Register 1 (0x504h) = 1 to enable Debug mode. The Coefficient Memory Space is organized as follows.

TABLE 2. Coefficient Memory Space

REGISTER ADDRESS	REG	SISTER CONTENTS		
	(31:16)	(15:0)		
0x000h - 0x0FFh	256x16 bit Array Taps	256x16 bit Array Taps		
0x000ii - 0x0FFII	(Right Input to OUT4)	(Left Input to OUT4)		
0x100h - 0x1FFh	256x16 bit Array Taps	256x16 bit Array Taps		
OXTOON - OXTEFI	(Right Input to OUT3)	(Left Input to OUT3)		
0x200h - 0x2FFh	256x16 bit Array Taps	256x16 bit Array Taps		
0x20011 - 0x2FF11	(Right Input to OUT2)	(Left Input to OUT2)		
0x300h - 0x3FFh	256x16 bit Array Taps	256x16 bit Array Taps		
0x30011 - 0x3FF11	(Right Input to OUT1)	(Left Input to OUT1)		
0x400h - 0x47Eh (EVEN)	C2 128x16 bit Prefilter Taps	C0 128x16 bit Prefilter FIR Taps		
OX400II - OX47 EII (EVEIN)	(Right to Right)	(Left to Left)		
0x441h - 0x47Fh (ODD)	C3 128x16 bit Prefilter Taps	C1 128x16 bit Prefilter FIR Taps		
0x44111 - 0x47F11 (ODD)	(Right to Left)	(Left to Right)		

CONTROL REGISTERS

TABLE 3. Register Map

Register Name	Register Address	Default Value	7	6	5	4	3	2	1	0
	0x500h [7:0]	0xFFh				ARRA	Y_TAP		!	
FILTER	0x500h [15:8]	0xFFh	UNUSED				PRE_TAP			
CONTROL 0x500h 0xE4		0xE4h	CH4	_SEL	СНЗ	3_SEL	CH2	SEL	CH1	_SEL
	0x500h [31:24]	0x31h	ARRAY_ ENABLE	1 1				UNU	SED	
	0x501h [7:0]	0x00h		G1_GAIN				COMP_TH		
FILTER	0x501h [15:8]	0x00h	UNUSED	F	POST_GAII	N	UNUSED	C	OMP_RATI	0
COMP1	0x501h [23:16]	0x00h		ARRAY_COMP_SELECT						
	0x501h [31:24]	0x00h		UNUSED						
	0x502h [7:0]	0x00h		G1_GAIN			Г	COMP_TH		
FILTER	0x502h [15:8]	0x00h	UNUSED	JNUSED POST_GAIN		N	UNUSED	COMP_RATIO		0
COMP2	0x502h [23:16]	0x00h		G1_GAIN			<u> </u>	COMP_TH		
	0x502h [31:24]	0x00h	UNUSED	JNUSED POST_GAIN UNUSE			UNUSED	C	OMP_RATI	0
	0x503h [7:0]	0xFFh	DBG_DATA [7:0]							
FILTER DEBUG0	0x503h [15:8]	0xFFh				DBG_DA	TA [15:8]			
DEBUGU	0x503h [23:16]	0xFFh	DDO			DBG_DA	TA [23:16]			
	0x503h [31:24]	0xFFh	DBG_ STEP		1		UNUSED			
	0x504h [7:0]	0xFFh	DBG_ ENABLE	STEP_ ENABLE	UNUSE D	FILTER_ SELECT		ACC_A	ADDR	
FILTER	0x504h [15:8]	0xFFh				UNL	JSED			
DEBUG1	0x504h [23:16]	0xFFh				UNL	JSED			
	0x504h [31:24]	0xFFh				UNL	JSED			
1	0x505h [7:0]	0x00h		COUNT	1_MODE			CH_S	SEL	
FILTER	0x505h [15:8]	0x80h	CLEAR		UNUSED			COUNT2	_MODE	
STATS	0x505h [23:16]	0x00h		COUNT	1_MODE		CH_SEL			
	0x505h [31:24]	0x80h	CLEAR		UNUSED			COUNT2	_MODE	

Register Name	Register Address	Default Value	7	6	5	4	3	2	1	0
	0x508h [7:0]	0x7Fh				TAP_L	ENGTH			
FILTERTAP	0x508h [15:8]	0x00h				UNL	JSED			
(READ- ONLY)	0x508h [23:16]	0x00h		UNUSED						
	0x508h [31:24]	0x00h		UNUSED						
	0x509h [7:0]	0x00h		DBG_ACCL [7:0]						
ACCUML DEBUG	0x509h [15:8]	0x00h		DBG_ACCL [15:8]						
(READ- ONLY)	0x509h [23:16]	0x00h		DBG_ACCL [23:16]						
ŕ	0x509h [31:24]	0x00h		DBG_ACCL [31:24]						
	0x50Ah [7:0]	0x00h				DBG_	ACCH			
ACCUMH DEBUG	0x50Ah [15:8]	0x00h				BDG_	ACCH			
(READ- ONLY)	0x50Ah [23:16]	0x00h	UNUSED							
	0x50Ah [31:24]	0x00h	UNUSED							
	0x50Bh [7:0]	0x00h	DBG_SAT [7:0]							
DBG SAT	0x50Bh [15:8]	0x00h				DBG_S	AT [15:8]			
(READ- ONLY)	0x50Bh [23:16]	0x00h				DBG_SA	AT [23:16]			
	0x50Bh [31:24]	0x00h				UNL	JSED			
	0x50Ch [7:0]	0x00h				COUN	IT [7:0]			
STAT PCNT1	0x50Ch [15:8]	0x00h				COUN	T [15:8]			
(READ- ONLY)	0x50Ch [23:16]	0x00h				COUNT	Г [23:16]			
	0x50Ch [31:24]	0x00h	OVF			C	OUNT [30:2	4]		
	0x50Dh [7:0]	0x00h				COUN	IT [7:0]			
STAT PCNT2	0x50Dh [15:8]	0x00h				COUN	T [15:8]			
(READ- ONLY)	0x50Dh [23:16]	0x00h				COUNT	Г [23:16]			
	0x50Dh [31:24]	0x00h	OVF			C	OUNT [30:2	4]		

Register Name	Register Address	Default Value	7	6	5	4	3	2	1	0
	0x50Eh [7:0]	0x00h				COUN	T [7:0]			
STAT ACNT1	0x50Eh [15:8]	0x00h		COUNT [15:8]						
(READ- ONLY)	0x50Eh [23:16]	0x00h		COUNT [23:16]						
J.12.,	0x50Eh [31:24]	0x00h	OVF	OVF COUNT [30:24]						
	0x50Fh [7:0]	0x00h				COUN	T [7:0]			
STAT ACNT2	0x50Fh [15:8]	0x00h				COUN	Γ [15:8]			
(READ- ONLY)	0x50Fh [23:16]	0x00h		COUNT [23:16]						
0.12.7	0x50Fh [31:24]	0x00h	OVF							
	0x530h [7:0]	0x30h	CONFIG _CLK_ ENABLE	CONFIGCLK_ DEVICE_ID						
SYS CONFIG	0x530h [15:8]	0x00h	ALTID_ ENABLE	ALTID_ ALT DEVICE ID						
	0x530h [23:16]	0x8Ch	CL_ ENABLE	CL_ LINUSED CL PAGE CL W				CL_W	CL_REQ	
	0x530h [31:24]	0x00h		LINUSED MBIST1_ MB				MBISTO_ ENABLE		
	0x531h [7:0]	0x00h	TRANS_LENGTH [7:0]					Į.		
	0x531h [15:8]	0x10h				TRANS_LE	NGTH [15:8	;]		
CL REG0	0x531h [23:16]	0x00h				REG_START	_ADDR [7:	0]		
	0x531h [31:24]	0x00h			F	REG_START	_ADDR [16	:8]		
	0x532h [7:0]	0x00h				E2_START_	_ADDR [7:0]		
0. 5504	0x532h [15:8]	0x00h				E2_START_	ADDR [15:8	3]		
CL REG1	0x532h [23:16]	0x00h				UNU	SED			
	0x532h [31:24]	0x00h				UNU	SED			
	0x533h [7:0]	0x00h	UNL	JSED			E2_0	FFSET		
E2_	0x533h [15:8]	0x00h				UNU	SED			
OFFSET	0x533h [23:16]	0x00h				UNU	SED			
	0x533h [31:24]	0x00h		UNUSED						

Register Name	Register Address	Default Value	7	6	5	4	3	2	1	0
	0x534h [7:0]	0x00h	I ² C _EnXT	UNUSED			E2NXT_	OFFSET		
100 5 1/5	0x534h [15:8]	0x00h				UNL	JSED			
I ² C_EnXT	0x534h [23:16]	0x00h				UNL	JSED			
	0x534h [31:24]	0x00h		UNUSED						
	0x538h [7:0]	0x7Fh	UNI	UNUSED MBIST_EN MBIST_GO MBIST_DON					_DONE	
MBIST STAT	0x538h [15:8]	0x80h		UNUSED				Į.		
(READ- ONLY)	0x538h [23:16]	0x00h	UNUSED							
ŕ	0x538h [31:24]	0x80h				UNL	JSED			
	0x520h [7:0]	0x06h				POWER_UP	_DELAY [7:	:0]		
	0x520h [15:8]	0x00h		POWER_UP_DELAY [15:8]						
DELAY -	0x520h [23:16]	0x20h	DEGLITCH_DELAY							
	0x520h [31:24]	0x09h	STATE_DELAY							
	0x521h [7:0]	0x00h		UNU	SED		VREF_ DELAY	PULSE	FORCE	ENABLE
ENABLE &	0x521h [15:8]	0x00h	UNUSED	QSA_ CLK_ STOP	HIFI	PCM_ I2S_CLK MCLK_RATE CLK_SEL				
CLOCKS -	0x521h [23:16]	0x00h			UNUSED					ADC_ SYNC
	0x521h [31:24]	0x00h				UNL	JSED			•
	0x522h [7:0]	0x33h	ZERO_ CROSS	MUTE			ADC	C_LVL		
DIGITAL	0x522h [15:8]	0x33h		JSED			I2S_	_LVL		
MIXER	0x522h [23:16]	0x00h	I ² SB_ON	I2SA_ON	I ² SB_	TX_SEL	I ² SA_	TX_SEL	ADC_DS	I ² S_DSF
	0x522h [31:24]	0x00h	OUT	4_SEL	ОИТ	3_SEL	OUT	2_SEL	OUT1	SEL
	0x523h [7:0]	0x00h	BYPASS _MOD	AUTO _SD	ADC TRIM	ZERO _DIG	ZERO_ ANA	PARALLEL	ANA	_LVL
ANIALOO	0x523h [15:8]	0x00h		UNUSED		SE_MOD	PMC_ TEST	TSD_DIS	SCKT _DIS	TST_SH
ANALOG	0x523h [23:16]	0x00h				UNL	JSED			
	0x523h [31:24]	0x00h		UNUSED						

Register Name	Register Address	Default Value	7	6	5	4	3	2	1	0
	0x524h [7:0]	0x01h	SYNC_ MODE	STEREO_ SYNC_ PHASE	CLOCK_ PHASE	SYNC _MS	CLK_MS	TX_ ENABLE	RX_ ENABLE	STEREO
	0x524h [15:8]	0x00h	UNI	UNUSED HAI				LE_DIVIDER		
	0x524h [23:14]	0x00h		UNU	ISED		SYNTH_ DENOM	S	YNTH_NUN	1
	0x524h [31:24]	0x00h	UNI	USED	МОМ	NO_SYNC_V	VIDTH	S	YNC_RATE	Ē
I ² S PORT	0x525h [7:0]	0x00h	тх	_BIT		TX_WIDTH	l	F	RX_WIDTH	
0x525h [15:8]		0x02h	RX_ A/μLAW	RX_ COMPAN D		RX_	MSB_POSI	TION		RX _MODE
0x525h [23:16] 0		0x02h	TX_ A/μLAW	TX_ COMPAN D		TX_	MSB_POSI	TION		TX _MODE
	0x525h [31:24]	0x00h		UNUSED						
	0x526h [7:0]	0x00h								
	0x526h [15:8]	0x00h								
ADC TRIM	0x526h [23:14]	0x00h	ADC_COMP_COEFF_C1 [7:0]							
CO-EF FICIENT	0x526h [31:24]	0x00h			AD	C_COMP_C	OEFF_C1 [FF_C1 [15:8]		
	0x527h [7:0]	0x00h			ΑГ	OC_COMP_C	COEFF_C2	[7:0]		
	0x527h [15:8]	0x00h			AD	C_COMP_C	OEFF_C2 [15:8]		
	0x528h [7:0]	0x00h	UNI	USED	I2SL _LVL CLIP	I2SR _LVL CLIP	ADCL _LVL CLIP	ADCR _LVL CLIP	ADCL_ CLIP	ADCR_ CLIP
READBACK (READ-	0x528h [15:8]	0x00h		UNUSED		THERMAL	SHORT4	SHORT3	SHORT2	SHORT
ONLY)	0x528h [23:14]	0x00h				SP	ARE			
	0x528h [31:24]	0x00h				UNL	JSED			
	0x529h [7:0]	0x00h	0x00h UNUSED CE					CE_S1	ГАТЕ	
READBACK	0x529h [15:8]	0x00h				SP	ARE			
(READ- ONLY)	0x529h [23:14]	0x00h				UNL	JSED			
	0x529h [31:24]	0x00h				UNL	JSED			

FILTER CONTROL REGISTER (0x500h)

Configures the LM48901 Array and Pre-Array filters (Spatial Engine). The Filter Control Register sets the length of the Array and Pre-Array filter taps, and selects the filter channel source for each audio output. Set PRE_BYPASS and ARRAY_BYPASS to 1 to bypass the Spatial Engine, disabling the spatial effect without modifying the coefficients. Set PRE_ENABLE and ARRAY_ENABLE

to 1 to enable the Spatial Engine. Set PRE_ENABLE and ARRAY_ENABLE to 0 to disable the spatial engine. Disabling the Spatial Engine does not affect the register contents. Disable the Spatial Engine during coefficient programming.

TABLE 4. Filter Control Register

BIT	NAME	VALUE	DESCRIPTION
7:0	ARRAY_TAP		Array Filter Tap Length
14:8	DDE TAD		Pre-filter Tap Length. Pre-filter tap length should be
14.0	PRE_TAP		less than or equal to the Array filter tap length
15	UNUSED		
			Channel 1 Output Routing Selection
		00	Array Filter Channel 0 Output Select
17:16	CH1_SEL	01	Array Filter Channel 1 Output Select
		10	Array Filter Channel 2 Output Select
		11	Array Filter Channel 3 Output Select
			Channel 2 Output Routing Selection
		00	Array Filter Channel 0 Output Select
19:18	CH2_SEL	01	Array Filter Channel 1 Output Select
		10	Array Filter Channel 2 Output Select
		11	Array Filter Channel 3 Output Select
			Channel 3 Output Routing Selection
		00	Array Filter Channel 0 Output Select
21:20	CH3_SEL	01	Array Filter Channel 1 Output Select
		10	Array Filter Channel 2 Output Select
		11	Array Filter Channel 3 Output Select
			Channel 4 Output Routing Selection
		00	Array Filter Channel 0 Output Select
23:22	CH4_SEL	01	Array Filter Channel 1 Output Select
		10	Array Filter Channel 2 Output Select
		11	Array Filter Channel 3 Output Select
27:24	UNUSED		
28	PRE BYPASS	0	Pre-Array filter not bypassed
20	FNL_DTFA33	1	Pre-Array filter bypassed
29	ADDAY BYDACC	0	Array filter not bypassed
29	ARRAY_BYPASS	1	Array filter bypassed
30	PRE_ENABLE	0	Pre-Array filter disabled. Disable the Pre-Array Filter during filter and coefficient programming. Disabling the Pre-Array Filter does not affect the device memory contents.
		1	Pre-Array filter enabled
31	ARRAY_ENABLE	0	Array filter disabled. Disable the Array Filter during filter and coefficient programming. Disabling the Array Filter does not affect the device memory contents.
		1	Array filter enabled

COMPRESSOR CONTROL REGISTER 1 (FILTER COMP1) (0x501h)

TABLE 5. Compressor Control Register

BIT	NAME	VALUE	DESCRIPTION
			Pre-Filter Compressor Threshold
		00000	0
		00001	0.3125
		00010	0.0625
4.0	COMP. TH	-	-
4:0	COMP_TH	10000	0.5
		-	-
		11000	0.75
		-	-
		11111	0.96875
			Pre-Compression Gain (V/V)
		000	2
		001	4
		010	8
7:5	G1_GAIN	011	16
		100	32
		101	64
		110	128
		111	256
			Compression Ratio
		000	1:1
		001	2:1
		010	2.66:1
10:8	COMP_RATIO	011	4:1
		100	5.33:1
		101	8:1
		110	10.66:1
		111	16:1
11	UNUSED		
			Post Compression Gain (V/V)
		000	1
		001	1.25
		010	1.5
14:12	POST_GAIN	011	2
		100	2.5
		101	3
		110	4
		111	8
15	UNUSED		

BIT	NAME	VALUE	DESCRIPTION
23:16	ARRAY_COMP_SELECT		Array Filter Compression Control Register Select. The Array Filter has four channels, each channel can choose one of two Array Filter Compression Threshold, Pre-Compression Gain, Compression Ratio, and Post Compression Gain settings from the FILTER_COMP2 register Table 4.
		0000	Select Setting 0
		-	-
		1111	Select Setting 1
31:24	UNUSED		

COMPRESSOR CONTROL REGISTER 2 (FILTER COMP2) (0x502h)

TABLE 6. Compressor Control Register 2

BIT	NAME	VALUE	DESCRIPTION
			Array Filter Compressor Threshold (Setting 0)
		00000	0
		00001	0.03125
		00010	0.0325
4:0	COMP_TH	-	-
4.0	COMP_III	10000	0.5
		-	-
		11000	0.75
		-	-
		11111	0.96875
			Pre-Compression Gain (V/V) (Setting 0)
		000	2
		001	4
		010	8
7:5	G1_GAIN	011	16
		100	32
		101	64
		110	128
		111	256
			Compression Ratio (Setting 0)
		000	1:1
		001	2:1
		010	2.66:1
10:8	COMP_RATIO	011	4:1
		100	5.33:1
		101	8:1
		110	10.66:1
		111	16:1
11	UNUSED		

BIT	NAME	VALUE	DESCRIPTION
			Post Compression Gain (V/V) (Setting 0)
		000	1
		001	1.25
		010	1.5
14:12	POST_GAIN	011	2
		100	2.5
		101	3
		110	4
		111	8
15	UNUSED		
			Pre-Filter Compressor Threshold (Setting 1)
		00000	0
		00001	0.03125
		00010	0.0325
20:16	COMP. TH	-	-
20.16	COMP_TH	10000	0.5
		-	-
		11000	0.75
		-	-
		11111	0.96875
			Pre-Compression Gain (V/V) (Setting 1)
		000	2
		001	4
		010	8
23:21	G1_GAIN	011	16
		100	32
		101	64
		110	128
		111	256
			Compression Ratio (Setting 1)
		000	1:1
		001	2:1
		010	2.66:1
24:26	COMP_RATIO	011	4:1
		100	5.33:1
		101	8:1
		110	10.66:1
		111	16:1
27	UNUSED		
			Post Compression Gain (V/V) (Setting 1)
		000	1
		001	1.25
		010	1.5
30:28	POST_GAIN	011	2
		100	2.5
		101	3
		110	4
		111	8
31	UNUSED		

FILTER DEBUG REGISTER 1 (FILT_DBG1) (0x504h)

TABLE 7. Filter Debug Register 1

BIT	NAME	VALUE	DESCRIPTION
3:0	ACC_ADDR		Accumulator Address. Selects which accumulator is read during debug mode
4	FILTER SELECT	0	Selects Pre-Filter Accumulators
4	FILTEN_SELECT	1	Selects Array Filter Accumulators
5	UNUSED		
6	CTED ENABLE	0	Single Step Disabled
6	STEP_ENABLE	1	Single Step Enabled
7	DDC ENABLE	0	Debug Mode Disabled. Coefficient memory is inaccessible with Debug mode is disabled.
	DBG_ENABLE	1	Debug Mode Enabled. Coefficient memory is accessible when Debug mode is enabled.
31:8	UNUSED		

FILTER STATISTICS CONTROL REGISTER (FILT_STC) (0x505h)

TABLE 8. Filter Statistics Control Register

BIT	NAME	VALUE	DESCRIPTION
PRE-FILTER Coul	nter	!	
			Channel Select
		000	Channel 0
		001	Channel 1
		010	Channel 2
3:0	CH_SEL	011	Channel 3
		100	Channel 4
		101	Channel 5
		110	Channel 6
		111	Channel 7
			Counter 1 Mode Select. Specifies input of Counter 1
		0000	Sample Count Mode. Every audio sample is counted
		0001	Overflow. Overflow events counted
		0010	Frequency Error. Indicates input frequency not sufficient for given filter length
		1000	MAGN[7]
7:4	COUNT1_MODE	1001	MAGN[7:6]
		1010	MAGN[7:5}
		1011	MAGN[7:4}
		1100	MAGN[7:3}
		1101	MAGN[7:2]
		1110	MAGN[7:1}
		1111	MAGN[7:0]

BIT	NAME	VALUE	DESCRIPTION
			Counter 2 Mode Select. Specifies input of Counter 2
		0000	Sample Count Mode. Every audio sample is counted
		0001	Overflow. Overflow events counted
			Frequency Error. Indicates input frequency not
		0010	sufficient for given filter length
		1000	MAGN[7]
11:8	COUNT2_MODE	1001	MAGN[7:6]
		1010	MAGN[7:5}
		1011	MAGN[7:4}
		1100	MAGN[7:3}
		1101	MAGN[7:2]
		1110	MAGN[7:1]
		1111	MAGN[7:0]
14:12	UNUSED		
		0	Counter Enabled
15	CLEAR	1	Counter Cleared
ARRAY-FILTER C	ounter		
			Channel Select
		000	Channel 0
		001	Channel 1
		010	Channel 2
19:16	CH_SEL	011	Channel 3
		100	Channel 4
		101	Channel 5
		110	Channel 6
l		111	Channel 7
			Counter 1 Mode Select. Specifies input of Counter 1
		0000	Sample Count Mode. Every audio sample is counted
		0001	Overflow. Overflow events counted
		0010	Frequency Error. Indicates input frequency not sufficient for given filter length
		1000	MAGN[7]
23:20	COUNT1_MODE	1001	MAGN[7;6]
20.20	OCCIVITI_WODE	1010	MAGN[7:5]
		1011	MAGN[7:4}
		1100	MAGN[7:3]
		1101	MAGN[7:2]
ı		1110	MAGN[7:1]
		1111	MAGN[7:0]

BIT	NAME	VALUE	DESCRIPTION
			Counter 2 Mode Select. Specifies input of Counter 2
		0000	Sample Count Mode. Every audio sample is counted
		0001	Overflow. Overflow events counted
		0010	Frequency Error. Indicates input frequency not sufficient for given filter length
		1000	MAGN[7]
27:24	COUNT2_MODE	1001	MAGN[7:6]
		1010	MAGN[7:5}
		1011	MAGN[7:4}
		1100	MAGN[7:3}
		1101	MAGN[7:2]
		1110	MAGN[7:1}
		1111	MAGN[7:0]
30:28	UNUSED		
31	CLEAR	0	Counter Enabled
31	CLEAR	1	Counter Cleared

DELAY REGISTER (DELAY) (0x520h)

TABLE 9. Delay Register

BIT	NAME	VALUE	DESCRIPTION
15:0	POWER_UP_DELAY		Sets I2C Delay Time. Default 10ms delay.
23:16	DEGLITCH_DELAY		Sets ENABLE Bit Polling Timeout. Default 32ms delay
31:24	STATE_DELAY		Sets Delay Between Power Up/Down States

ENABLE AND CLOCK CONFIGURATION REGISTER (ENABLE & CLOCKS) (0x521h)

TABLE 10. Enable and Clock Configuration Register

BIT	NAME	VALUE	DESCRIPTION
0	ENABLE	0	Device Disabled in I ² C Mode
0	ENABLE	1	Device Enabled in I ² C Mode
4	FORCE	0	Device Enabled Via SHDN < <overbar>> Pin</overbar>
1	FORCE	1	Device Enabled Via I2C
2	PULSE	0	SHDN< <overbar>> Requires a Stable Logic Level</overbar>
2	FULSE	1	SHDN< <overbar>> Accepts a Pulse Input</overbar>
		0	Device waits for delay time determined by
3	RELY_ON_VREF		STATE_DELAY to enable.
		1	Device waits for stable VREF
7:4	UNUSED		
			Selects PLL Input Divider
	MCLK_RATE	000	32fs (1.536MHz)
		001	64fs (3.072MHz)
		010	128fs (6.114MHz)
10:8		011	256fs (12.288MHz)
		100	512fs (24.576MHz)
		101	UNUSED
		110	UNUSED
		111	UNUSED
11	10C CLK	0	MCLK Input to PLL
11	I2S_CLK	1	I2S_CLK Input to PLL

BIT	NAME	VALUE	DESCRIPTION
		0	Oscillator Clock Input to Power Management Circuitry
			External Clock to Power Management Circuitry. Power
12	PMC_CLK_SEL	4	management circuit uses MCLK or I2S_CLK. Clock
		'	source depends on the state of I2S_CLK. External
			Clock mode disables the internal oscillator.
	HIFI	0	HiFi Mode Disabled
13		1	HiFi Mode Enabled. PLL always produces a 4096fs
			clock.
14	OOA OUK OTOD	0	QSA Clock Enabled
14	QSA_CLK_STOP	1	QSA Clock Disabled Following Device Configuration
15	UNUSED		
16	ADC_SYNC_SEL	0	Normal Operation
		4	Reverse ADC SYNC Signal for additional timing margin
		ı	at low supply voltages.
31:17	UNUSED		

DIGITAL MIXER CONTROL REGISTER (DIGITAL MIXER) (0x522h)

TABLE 11. Digital Mixer Control Register

BIT	NAME	VALUE	DESCRIPTION
			Sets the Gain of the ADC Path (dB)
		000000	-76.5
		000001	-75
		-	1.5dB steps
5:0	ADC_LVL	110010	-1.5
		110011	0
		110100	1.5
		-	1.5dB Steps
		111111	18
		0	Normal Operation
6	MUTE	1	Mute
7	7VD DIQADI E	0	Zero Crossing Detection Enabled
1	ZXD_DISABLE	1	Zero Crossing Detection Disabled
			Sets the Gain of the I2S Path (dB)
		000000	-76.5
		000001	-75
	I ² S_LVL	-	1.5dB steps
13:8		110010	-1.5
		110011	0 (V _{OUT} = 3.36V _{RMS} with 0dBFS input)
		110100	1.5
		-	1.5dB Steps
		111111	18
15:14	UNUSED		
10	IOC DOD	0	I2S Data Not Passed to DSP
16	I2S_DSP	1	I ² S Data Passed to DSP
47	4D0 D0D	0	ADC Output Not Passed to DSP
17	ADC_DSP	1	ADC Output Passed to DSP

ВІТ	NAME	VALUE	DESCRIPTION
			Selects Input of Primary I2S Transmitter
		00	None
19:18	ISA_TX_SEL	01	ADC
		10	DSP1/2
		11	DSP3/4
			Selects Input of Secondary I2S Transmitter
		00	None
21:20	ISB_TX_SEL	01	ADC
		10	DSP1/2
		11	DSP3/4
00	IOOA ON	0	I ² SA Data NOT Output on SHDN
22	I2SA_ON	1	I ² SA Data Output on SHDN
00	IOOD ON	0	I ² SB Data NOT Output on SHDN
23	I2SB_ON	1	I ² SB Data Output on SHDN
			Selects OUT1 Amplifier Input Source
		00	OUT1 Disabled
25:24	OUT1_SEL	01	DSP
		10	12S
		11	ADC
			Selects OUT2 Amplifier Input Source
		00	OUT2 Disabled
27:26	OUT2_SEL	01	DSP
		10	12S
		11	ADC
			Selects OUT3 Amplifier Input Source
		00	OUT3 Disabled
29:28	OUT3_SEL	01	DSP
		10	12S
		11	ADC
			Selects OUT4 Amplifier Input Source
		00	OUT4 Disabled
31:30	OUT4_SEL	01	DSP
		10	12S
		11	ADC

ANALOG CONFIGURATION REGISTER (ANALOG) (0x523h)

TABLE 12. Analog Configuration Register

BIT	NAME	VALUE	DESCRIPTION
			Sets ADC Preamplifier Gain (dB)
		00	0
1:0	ANA_LVL	01	2.4
		10	3.5
		11	6
2	PARALLEL	0	Normal Operation. OUT2 and OUT3 operate as separate amplifiers.
		1	Parallel Operation. OUT2 and OUT3 operate in parallel as a single amplifier.

BIT	NAME	VALUE	DESCRIPTION
		0	Normal Operation
3	ZERO_ANA	1	Auto-Shutdown Mode. Automatically disables the amplifiers when no analog input is detected.
		0	Normal Operation
4	ZERO_DIG	1	Auto-Shutdown Mode. Automatically disables the amplifiers when there is no I2S input.
		0	ADC Trim Disabled
5	ADCTRIM	1	ADC Trim Enabled. Use ADC_COMP_COEFF_C0-C2 to trim ADC.
6	ALITO CD	0	Normal Operation
0	AUTO_SD	1	Fault Conditions Disable the Amplifiers
		0	Normal Operation
7	BYPASS_MOD	1	Pulse Correction Bypass. Amplifier output stages act as a buffer, passing PWM signal without correction to output.
		0	Normal Operation
8	TST_SHT	1	Short Amplifier Inputs. Sets amplifier outputs to 50% duty cycle, minimizing click and pop during power up/down.
0	CONT. DIC	0	Normal Operation
9	SCKT_DIS	1	Output Short Circuit Protection Disabled
10	TOD DIG	0	Normal Operation
10	TSD_DIS	1	Thermal Shutdown Disabled
11	PMC_TEST	0	Normal Operation
''	FIVIO_TEST	1	PMC uses PLL Source Clock
12	SE_MOD	0	Normal Operation
12	OL_IVIOD	1	Single Edge Modulation Mode
31:13	UNUSED		

I²S PORT CONFIGURATION REGISTER (I²S PORT) (0x524h/0x525h)

TABLE 13.

BIT	NAME	VALUE	DESCRIPTION
		0x524h	
0	STEREO	0	Mono Mode
0	STEREO	1	Stereo Mode
	RX ENABLE	0	Receive Mode Disabled
'	NA_ENABLE	1	Receive Mode Enabled
2	TX ENABLE	0	Transmit Mode Disabled
2	I A_EINABLE	1	Transmit Mode Enabled
		0	I2S Clock Slave. Device requires an external SCLK for
3	CLK_MS		proper operation.
	OLN_IVIO	1	I2S Clock Master. Device generates SCLK and transmits
			when either RX or TX mode are enabled.
	SYNC_MS	0	I2S WS Slave. Device requires an external WS for proper
4			operation.
		1	I2S WS Master. Device generates WS and transmits
			when either RX or TX mode are enabled.
5		0	I2S Clock Phase. Transmit on falling edge, receive on
	CLOCK_PHASE		rising edge.
	OLOGK_FTIAGE	1	PCM Clock Phase. Transmit on rising edge, receive on
		'	falling edge.

BIT	NAME	VALUE	DESCRIPTION
6	STEREO_SYNC	0	I2S Data Format: Left, Right
0	_PHASE	1	I2S Data Format: Right, Left
		Mono	Rising edge indicates start of data word.
7	SYNC_MODE	0	SYNC low = Left, SYNC high = Right
		1	SYNC low = Right, SYNC high = left
			Configures the I2S port master clock half-cycle divider.
			Program the half-cycle divider by: (ReqDiv*2) 1
		000000	BYPASS
		000001	1
13:8	HALF_CYCLE	000010	1.5
13.6	_DIVIDER	000011	2
		-	-
		111101	31
		111110	31.5
		111111	32
15:14	UNUSED		
			Sets the Clock Generator Numberator
		000	SYNTH_DENOM (1/)
		001	100/SYNTH_DENOM
		010	96/SYNTH_DENOM
18:16	SYNTH_NUM	011	80/SYNTH_DENOM
		100	72/SYNTH_DENOM
		101	64/SYNTH_DENOM
		110	48/SYNTH_DENOM
		111	0/SYNTH_DENOM
19	SYNTH_DENOM	0	Clock Generator Denominator = 128
		1	Clock Generator Denominator = 125
23:20	UNUSED		
			Sets number of clock cycles before SYNC pattern repeats.
			MONO MODE
		000	8
		001	12
		010	16
		011	18
		100	20
		101	24
26:24	SYNC_RATE	110	25
20.2 7	STNO_DATE	111	32
			STEREO MODE
		000	16
		01	24
		010	32
		011	36
		100	40
		101	48
		110	50
		111	64

BIT	NAME	VALUE	DESCRIPTION
			Sets SYNC symbol width in Mono Mode
		000	1
		001	2
		010	4
29:27	MONO_SYNC_WIDTH	011	7
		100	8
		101	11
		110	15
		111	16
31:30	UNUSED		
		0x525	5h
			Sets number of valid RECEIVE bits.
		000	24
		001	20
		010	18
2:0	RX_WIDTH	011	16
		100	14
		101	13
		110	12
		111	8
			Sets number of TRANSMIT bits.
		000	24
		001	20
		010	18
5:3	TX_WIDTH	011	16
		100	14
		101	13
		110	12
		111	8
			Sets number of pad bits after the valid Transmit bits.
		00	0
7:6	TX_BIT	01	1
		10	High-Z
		11	High-Z
8	DY MODE	0	MSB Justified Receive Mode
°	RX_MODE	1	LSB Justified Receive Mode

BIT	NAME	VALUE	DESCRIPTION
			MSB location from the frame start (MSB Justified) or LSB
			location from the frame end (LSB Justified)
		00000	0 (DSP/PCM LONG)
		00001	1 (I2S/PCM SHORT)
		00010	2
		00011	3
		00100	4
		00101	5
		00110	6
		00111	7
		01000	8
		01001	9
		01010	10
		01011	11
		01100	12
		01101	13
10.0	DV MOD DOGITION	01110	14
13:9	RX_MSB_POSITION	01111	15
		10000	16
		10001	17
		10010	18
		10011	19
		10100	20
		10101	21
		10110	22
		10111	23
		11000	24
		11001	25
		11010	26
		11011	27
		11100	28
		11101	29
		11110	30
		11111	31
		0	Normal Operation
14	RX_COMPAND	1	Audio Data Companded
		0	μLaw Compand Mode
15	RX_A/μLAW	1	A-Law Compand Mode
		0	MSB Justified Transmit Mode
16	TX_MODE	1	LSB Justified Transmit Mode

BIT	NAME	VALUE	DESCRIPTION
			MSB location from the frame start (MSB Justified) or LSB
			location from the frame end (LSB Justified)
		00000	0 (DSP/PCM LONG)
		00001	1 (I2S/PCM SHORT)
		00010	2
		00011	3
		00100	4
		00101	5
		00110	6
		00111	7
		01000	8
		01001	9
		01010	10
		01011	11
		01100	12
		01101	13
		01110	14
21:17	TX_MSB_POSITION	01111	15
		10000	16
		10001	17
		10010	18
		10011	19
		10100	20
		10101	21
		10110	22
		10111	23
		11000	24
		11001	25
		11010	26
		11011	27
		11100	28
		11101	29
		11110	30
		11111	31
	- v. 00:	0	Normal Operation
22	TX_COMPAND	1	Audio Data Companded
		0	μLaw Compand Mode
23	TX_A/μLAW	1	A-Law Compand Mode
31:24	UNUSED		

ADC TRIM COEFFICIENT REGISTER (ADC_TRIM) (0x526h/0x527)

TABLE 14. ADC Trim Coefficient Register

BIT	NAME	VALUE	DESCRIPTION	
	0x526h			
15:0	ADC_COMP_COEFF_C0		Sets ADC Trim Coefficient C0	
31:16	ADC_COMP_COEFF_C1		Sets ADC Trim Coefficient C1	
	0x527h			
15:0	ADC_COMP_COEFF_C2		Sets ADC Trim Coefficient C2	

READBACK REGISTER (READBACK) (0x528h) READ-ONLY

TABLE 15. Readback Register

BIT	NAME	VALUE	DESCRIPTION
0	ADCR_CLIP	1	Right Channel ADC Input Clipped
1	ADCL_CLIP	1	Left Channel ADC Input Clipped
2	ADCR_LVLCLIP	1	Right Channel ADC Output Clipped
3	ADCL_LVLCLIP	1	Left Channel ADC Output Clipped
4	I2SR_LVLCLIP	1	Right Channel I2S Output Clipped
5	I2SL_LVLCLIP	1	Left Channel I2S Output Clipped
7:6	UNUSED		
8	SHORT1	1	OUT1 Output Short Circuit
9	SHORT2	1	OUT2 Output Short Circuit
10	SHORT3	1	OUT3 Output Short Circuit
11	SHORT4	1	OUT4 Output Short Circuit
12	THERMAL	1	Thermal Shutdown Threshold Exceeded
23:13	SPARE		
31:24	UNUSED		

SYSTEM CONFIGURATION REGISTER (SYS_CONFIG) (0x530h)

TABLE 16. System Configuration Register

BIT	NAME	VALUE	DESCRIPTION
6:0	DEVICE_ID		Sets LM48901 Device ID in slave mode
7	CONFIG_CLK	0	Configuration Loader Clock Disabled
/	_ENABLE	1	Configuration Loader Clock Enabled
14:8	ALT_DEVICE_ID		Sets Alternate Device ID in Slave Mode.
15	ALTID ENABLE -	0	Selects DEVICE_ID
15	ALTID_ENABLE	1	Selects ALT_DEVICE_ID
		0	Configuration Loader Access not Requested
16	CL_REQ		Configuration Loader Access Requested. I2C Master
		1	Transaction Enabled
17	CL_W	0	Configuration Loader Set to READ-ONLY
17	CL_VV	1	Configuration Loader Set to WRITE
			Sets I2C Page Mode Length
		00	Single Byte
20:18	CL_PAGE	01	4 Bytes
		10	8 Bytes
		11	16 Bytes
22:21	UNUSED		
		0	Device Configured as I2C Slave
23	CL_ENABLE	1	Device Configured as I2C Master
		0	Memory BIST Controller 0 Disabled
24	MBISTO_ENABLE	1	Memory BIST Control 0 Enabled.
		0	Memory BIST Controller 1 Disabled
25	MBIST1_ENABLE	1	Memory BIST Control 1 Enabled.
31:26	UNUSED		

I2C MASTER CONFIGURATION LOADER REGISTER 0 (CL_REG0) (0x531h)

TABLE 17. Filter Debug Register 0

BIT	NAME	VALUE	DESCRIPTION
15:0	TRANS_LENGTH		Sets I2C Master Transaction Length
31:16	REG_START_ADDR		Starting Address of LM48901 Memory

I²C MASTER CONFIGURATION LOADER REGISTER 1 (CL_REG1) (0x532h)

TABLE 18. Filter Debug Register 1

BIT	NAME	VALUE	DESCRIPTION
			Sets EEPROM Address. Indicates EEPROM start
15:0	E2_START_ADDR		address where data is stored
31:16	UNUSED		

EEPROM ADDRESS OFFSET REGISTER (E2_OFFSET) (0x533h)

TABLE 19. EEPROM Address Offset Register

BIT	NAME	VALUE	DESCRIPTION
5:0	E2_OFFSET		EEPROM Address Offset Value.
31:6	UNUSED		

I²C EnXT REGISTER (I²CEnXT) (0x534h)

TABLE 20. I²C EnXT Register

BIT	NAME	VALUE	DESCRIPTION
5:0	E2NXT_OFFSET		Sets EEPROM Address Offset for Following LM48901 when devices are Daisy Chained.
6	UNUSED		
_	100 F-VT	0	Next Device in Daisy Chain Disabled. I2C_EX driven Low.
7	I2C_EnXT	1	Next Device in Daisy Chain Enabled. I2C_EX driven HIGH.
31:8	UNUSED		

READ-ONLY MBIST STATUS REGISTER (MBIST_STAT) (0x538h)

TABLE 21. MBIST Status Register

BIT	NAME	VALUE	DESCRIPTION
1:0	MBIST_DONE		Logic HIGH indicates memory test complete
3:2	BIST_GO		Logic Low indicates memory fault when MBIST_DONE is HIGH
		0	MBIST Read-back Disabled
5:4	MBIST_EN	1	MBIST Read-back Enabled
31:6	UNUSED		

DAISY CHAINING

I2C_EN/I2C_EX

The LM48901 supports daisy chaining up to 127 devices from a single I²C bus utilizing I²C_EN and I²C_EX in a chain enable scheme. I²C_EX is a push/pull logic output that drives the I²C_EN of the following device in the chain *Figure 11*. At power up, I²C_EnXT (bit 8, I²C_EnXT Register [0x534h]) is set to 0, resulting in I²C_EN driven low, disabling the I²C interface of the following device. Once device configuration is complete, and I²C_EnXT is set to 1, I²C_EN is driven high, enabling the I²C interface of the following device. Driving I²C_EN high enables the device's I²C interface, driving I²C_EN low disables the device's I²C interface.

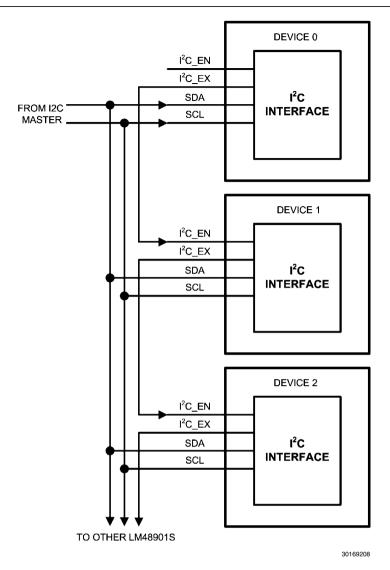


FIGURE 11. I²C_EN/I²C_EX Daisy Chaining Example

Device Address

The 0110000X is the default LM48901 I²C address hard coded into the device. Two alternate device addresses can be programmed, via the SYS CONFIG (0x530h) Register. Use the default address during initial device configuration.

GENERAL AMPLIFIER FUNCTION

Class D Amplifier

The LM48901 features four high-efficiency Class D audio power amplifiers that utilizes Texas Instruments' filterless modulation scheme external component count, conserving board space and reducing system cost. The Class D outputs transition from V_{DD} to GND with a 384kHz switching frequency. With no signal applied, the outputs switch with a 50% duty cycle, in phase, causing the two outputs to cancel. This cancellation results in no net voltage across the speaker, thus there is no current to the load in the idle state.

With the input signal applied, the duty cycle (pulse width) of the LM48901 outputs changes. For increasing output voltage, the duty cycle of OUT_+ increases while the duty cycle of OUT_- decreases. For decreasing output voltages, the converse occurs. The difference between the two pulse widths yield the differential output voltage.

Edge Rate Control (ERC)

The LM48901 features Texas Instruments' advanced edge rate control (ERC) that reduces EMI, while maintaining high quality audio reproduction and efficiency. The LM48901 ERC greatly reduces the high frequency components of the output square waves by controlling the output rise and fall times, slowing the transitions to reduce RF emissions, while maximizing THD+N and efficiency performance. The overall result of the E²S system is a filterless Class D amplifier that passes FCC Class B radiated emissions standards with 24in of twisted pair cable, with excellent 0.06% THD+N and high 89% efficiency.

POWER DISSIPATION AND EFFICIENCY

The major benefit of a Class D amplifier is increased efficiency versus a Class AB. The efficiency of the LM48901 is attributed to the region of operation of the transistors in the output stage. The Class D output stage acts as current steering switches, consuming negligible amounts of power compared to their Class AB counterparts. Most of the power loss associated with the output stage is due to the IR loss of the MOSFET on-resistance, along with switching losses due to gate charge.

ANALOG INPUT

The LM48901 features a differential input, stereo ADC for analog systems. A differential amplifier amplifies the difference between the two input signals. Traditional audio power amplifiers have typically offered only single-ended inputs resulting in a 6dB reduction of SNR relative to differential inputs. The LM48901 also offers the possibility of DC input coupling which eliminates the input coupling capacitors. A major benefit of the fully differential amplifier is the improved common mode rejection ratio (CMRR) over single ended input amplifiers. The increased CMRR of the differential amplifier reduces sensitivity to ground offset related noise injection, especially important in noisy systems.

PARALLEL MODE

In Parallel mode, channels OUT2 and OUT3 are driven from the same audio source, allowing the two channels to be connected in parallel, increasing output power to 3.2W into 4Ω at 10% THD+N. Set bit 2 (PARALLEL) of the Analog Configuration Register (0x532h) = 1 to configured the device in Parallel mode. After the device is set to Parallel mode, make an external connection between OUT2+ and OUT3+, and a connection between OUT2- and OUT3- (Figure 2). In Parallel mode, the combined channels are driven from the OUT2 source. OUT1 and OUT4 are unaffected. Signal routing, mixing, filtering, and equalization are done through the Spatial Engine.

Make sure the device is configured in Parallel mode, before connecting OUT2 and OUT3 and enabling the outputs. Do not make a connection between OUT2 and OUT3 together while the outputs are enabled. Disable the outputs first, then make the connections between OUT2 and OUT3.

GAIN SETTING

The LM48901 has three gain stages, the ADC preamplifier, and two independent volume controls in the Digital Mixer, one for the ADC path and one for the I²S path. The ADC preamplifier has four gain settings (0dB, 2.4dB, 3.5dB, and 6dB). The preamplifier gain is set by bits 0 and 1 (ANA_LVL) of the Analog Configuration Register (0x523h). The Digital Mixer has two 64 step volume controls. The ADC path volume control is set by bits 5:0 (ADC_LVL) in the Digital Mixer Control Register (0x522h). The I²S path volume control is set by bits 13:8 (I²S_LVL) in the Digital Mixer Control Register (0x522h). Both volume controls have a range of -76.5dB to 18dB in 1.5dB increments.

MODULATOR POWER SUPPLY (AVDD1)

The AV_{DD1} (R_L package: bump C2, SQ package: pin 12) powers the class D modulators. For maximum output swing, set AV_{DD1} and PV_{DD} to the same voltage. *Table 22* shows the output voltage for different AV_{DD1} levels.

TABLE 22. Amplifier Output Voltage with Variable AVDD1 Voltage

AV _{DD1} (V)	V _{OUT} (V _{RMS}) @ PV _{DD} = 5V, THD+N = 1%	$V_{OUT} (V_{RMS}) @ PV_{DD} = 3.6V, THD+N = 1\%$
5	3.3	-
4.5	3.1	-
4.2	2.9	-
4	2.7	-
3.6	2.5	2.4
3.3	2.3	2.2
3	2.1	2.1
2.8	2	1.9

CLOCK REQUIREMENTS

The LM48901 requires an external clock source for proper operation, regardless of input source or device configuration. The device derives the ADC, digital mixer, DSP, I2S port, and PWM clocks from the external clock. The clock can be derived from either MCLK or SCLK inputs. Set bit 11 (I2S_CLK) of the Enable and Clock configuration register (0x521h) to 0 to select MCLK, set I2S_CLK to 1 to select SCLK. The LM48901 accepts five different clock frequencies, 1.536, 3.072, 6.114, 12.288, and 24.576MHz. Set bits 10:8 (MCLK_RATE) of the Enable and Clock Configuration Register to the appropriate clock frequency. In systems where both MCLK and SCLK are available, choose the lower frequency clock for improved power consumption.

SHUTDOWN FUNCTION

There are two ways to shutdown the LM48901, hardware mode, and software mode. The default is hardware mode.

Set bit 1 (FORCE) of the Enable and Clock Configuration Register (0x521h) to 0 to enable hardware shutdown mode. In hardware mode, the device is enabled and disabled through \overline{SHDN} . Connect \overline{SHDN} to V_{DD} for normal operation. Connect \overline{SHDN} to GND to disable the device. Hardware shutdown mode supports a one shot, or momentary switch \overline{SHDN} input. When bit 2 (PULSE) of the Enable and Clock Configuration Register (0x521h) is set to 1, the LM48901 responds to a rising edge on \overline{SHDN} to change the device state. When PULSE = 0, the device requires a stable logic level on \overline{SHDN} .

Set FORCE = 1 to enable software shutdown mode. In software shutdown mode, the device is enabled and disabled through bit 0 (ENABLE) of the Enable and Clock Configuration Register (0x512h). Set ENABLE = 0 to disable the LM48901. Set ENABLE = 1 to enable the LM48901.

In either hardware or software mode, the content of the LM48901 memory registers is retained after the device is disabled, as long as power is still applied to the device. Minimize power consumption by disabling the PMC clock oscillator when the LM48901 is shutdown. Set bit 12 (PMC_CLK_SEL) and bit 14 (QSA_CLK_STOP) of the Enable and Clock configuration Register (0x521h) = 1 to disable the PMC clock oscillator.

EXTERNAL CAPACITOR SELECTION

Power Supply Bypassing and Filtering

Proper power supply bypassing is critical for low noise performance and high PSRR. Place the supply bypass capacitors as close to the device as possible. Typical applications employ a voltage regulator with $10\mu\text{F}$ and $0.1\mu\text{F}$ bypass capacitors that increase supply stability. These capacitors do not eliminate the need for bypassing of the LM48901 supply pins. A $1\mu\text{F}$ capacitor is recommended for $10V_{DD}$, $10V_{DD}$, $10V_{DD}$, and $10V_{DD}$. A $10V_{DD}$, and $10V_{DD}$, and

REF and BYPASS Capacitor Selection

For best performance, bypass REF with a 4.7µF ceramic capacitor.

INPUT CAPACITOR SELECTION

The LM48901 analog inputs require input coupling capacitors. Input capacitors block the DC component of the audio signal, eliminating any conflict between the DC component of the audio source and the bias voltage of the LM48901. The input capacitors create a high-pass filter with the input resistors $R_{\rm IN}$. The -3dB point of the high pass filter is found using Equation (1) below.

$$f = 1 / 2\pi R_{IN}C_{IN}$$

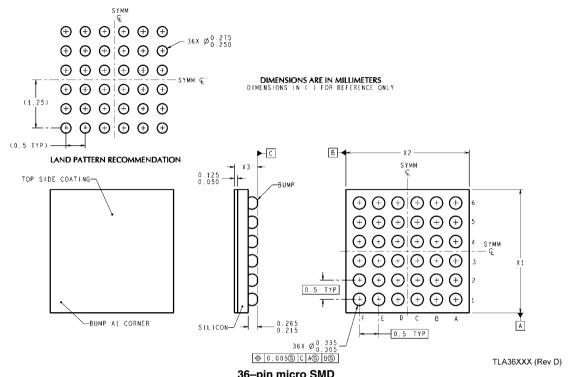
Where the value of R_{IN} is $20k\Omega$.

The input capacitors can also be used to remove low frequency content from the audio signal. Small speakers cannot reproduce, and may even be damaged by low frequencies. High pass filtering the audio signal helps protect the speakers. When the LM48901 is using a single-ended source, power supply noise on the ground is seen as an input signal. Setting the high-pass filter point above the power supply noise frequencies, 217Hz in a GSM phone, for example, filters out the noise such that it is not amplified and heard on the output. Capacitors with a tolerance of 10% or better are recommended for impedance matching and improved CMRR and PSRR.

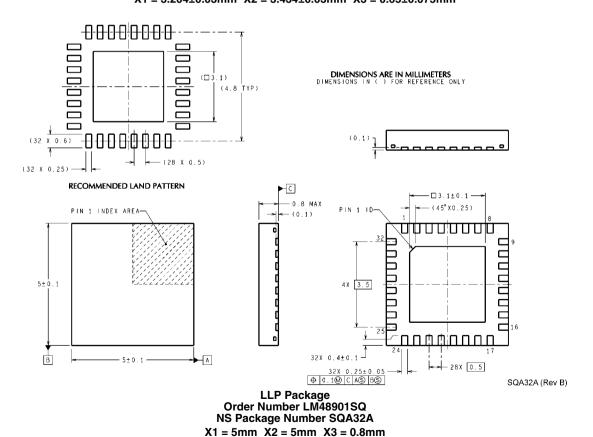
PCB LAYOUT GUIDELINES

As output power increases, interconnect resistance (PCB traces and wires) between the amplifier, load, and power supply create a voltage drop. The voltage loss due to the traces between the LM48901 and the load results in lower output power and decreased efficiency. Higher trace resistance between the supply and the LM48901 has the same effect as a poorly regulated supply, increasing ripple on the supply line, and reducing peak output power. The effects of residual trace resistance increases as output current increases due to higher output power, decreased load impedance or both. To maintain the highest output voltage swing and corresponding peak output power, the PCB traces that connect the output pins to the load and the supply pins to the power supply should be as wide as possible to minimize trace resistance.

The use of power and ground planes will give the best THD+N performance. In addition to reducing trace resistance, the use of power planes creates parasitic capacitors that help to filter the power supply line.


The inductive nature of the transducer load can also result in overshoot on one of both edges, clamped by the parasitic diodes to GND and $V_{\rm DD}$ in each case. From an EMI standpoint, this is an aggressive waveform that can radiate or conduct to other components in the system and cause interference. In is essential to keep the power and output traces short and well shielded if possible. Use of ground planes beads and micros-strip layout techniques are all useful in preventing unwanted interference.

As the distance from the LM48901 and the speaker increases, the amount of EMI radiation increases due to the output wires or traces acting as antennas become more efficient with length. Ferrite chip inductors places close to the LM48901 outputs may be needed to reduce EMI radiation.


Revision History

Rev	Date	Description	
1.0	10/31/11	Initial Web released.	
1.01	12/02/11	Fixed a typo (LM488901 to LM48901) on page 45.	
1.02	12/12/11	Added two sections "Modulator Power Supply" and Clock Requirements.	
1.03	12/16/11	Changed National to Texas Instruments.	

Physical Dimensions inches (millimeters) unless otherwise noted

36-pin micro SMD
Order Number LM48901RL
NS Package Number TLA36JSA
X1 = 3.204±0.03mm X2 = 3.434±0.03mm X3 = 0.65±0.075mm

48

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

Applications

Automotive and Transportation www.ti.com/automotive

e2e.ti.com

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

		•	
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video

RFID <u>www.ti-rfid.com</u>
OMAP Mobile Processors www.ti.com/omap

Products

Audio

Wireless Connectivity www.ti.com/wirelessconnectivity

www.ti.com/audio

TI E2E Community Home Page

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated