

original offset from the output signal. This offset cancellation circuitry allows optimized usage of the ADC full scale and relaxes ADC resolution requirements. The LMP91050 allows extra signal filtering (high pass, low pass or band pass) through dedicated pins A0 and A1, in order to remove out of band noise. The user can program

through the on board SPI interface. Available in a small form factor 10-pin MSOP package, the LMP91050 operates from -40 to +105°C.

Key Specifications

- Programmable gain
- Low noise (0.1 to 10 Hz)
- Gain Drift
- Phase Delay Drift
- Power supply voltage range

Features

- Programmable gain amplifier
- "Dark Signal" offset cancellation
- Supports external filtering
- Common mode generator and 8 bit DAC
- 10 pin MSOP package
- Demand control ventilation
- CO2 cabin control Automotive
- Alcohol detection Automotive
- Industrial safety and security
- GHG & Freons detection platforms

© 2012 Texas Instruments Incorporated

301641 SNAS517C

General Description

to the multiple discrete solutions.

LMP91050

Configurable AFE for Nondispersive Infrared (NDIR)

Sensing Applications

The LMP91050 is a programmable integrated Sensor Analog

Front End (AFE) optimized for thermopile sensors, as typically used in NDIR applications. It provides a complete signal

path solution between a sensor and microcontroller that gen-

erates an output voltage proportional to the thermopile volt-

age. The LMP91050's programmability enables it to support

multiple thermopile sensors with a single design as opposed

The LMP91050 features a programmable gain amplifier

(PGA), "dark phase" offset cancellation, and an adjustable common mode generator (1.15V or 2.59V) which increases

output dynamic range. The PGA offers a low gain range of

167V/V to 7986V/V

100 ppm/°C (max)

 $0.1 \mu V_{BMS}$

500ns (max)

2.7V to 5.5V

Typical Application

Typical NDIR Sensing Application Circuit

30164111

Ordering Information

Package	Part Number	Package Marking	Transport Media	NSC Drawing
	LMP91050MM		1K units tape and reel	
10-Pin MSOR	LMP91050MME	AN8A	250 units tape and reel	MUB10A
INISOP	LMP91050MMX	1	3.5K units tape and reel	

Connection Diagram

Pin Descriptions

Pin	Symbol	Туре	Description
1	IN	Analog Input	Signal Input
2	CMOUT	Analog Output	Common Mode Voltage Output
3	A0	Analog Output	First Stage Output
4	A1	Analog Input	Second Stage Input
5	GND	Power	Ground
6	OUT	Analog Output	Signal Output, reference to the same potential as CMOUT
7	CSB	Digital Input	Chip Select, active low
8	SCLK	Digital Input	Interface Clock
9	SDIO	Digital Input / Output	Serial Data Input / Output
10	VDD	Power	Positive Supply

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.

ESD Tolerance(<i>Note 2</i>)	
Human Body Model	2500V
Machine Model	250V
Charged Device Model	1250V
Supply Voltage (VDD)	-0.3V to 6.0V
Voltage at Any Pin	- 0.3V to VDD + 0.3V
Input Current at Any Pin	5mA
Storage Temperature Range	-65°C to 150°C
Junction Temperature(<i>Note 3</i>)	150°C
For soldering specifications:	
see product folder at www.natior	nal.com and

www.national.com/ms/MS/MS-SOLDERING.pdf

Operating Ratings (Note 1)

Supply Voltage	2.7V to 5.5V
Junction Temperature Range (<i>Note 3</i>)	-40°C to 105°C
Package Thermal Resitance, θ _{JA} 10 Lead MSOP	176 °C/W

Electrical Characteristics (<i>Note 4</i>)	The following specifications apply for VDD = 3.3V, VCM = 1.15V, Bold
values for $T_A = -40^{\circ}C$ to $+85^{\circ}C$ unless otherwise spec	sified. All other limits apply to $T_A = T_J = +25^{\circ}C$.

Symbol	Parameter	Conditions	Min (<i>Note 6</i>)	Typ (<i>Note 5</i>)	Max (<i>Note 6</i>)	Units
Power Supp	bly	•		•		
VDD	Supply Voltage		2.7	3.3	5.5	V
IDD	Supply Current	All analog block ON	3.1	3.7	4.2	mA
	Power Down Supply Current	All analog block OFF	45	85	121	μA
Offset Cano	ellation (Offset DAC)					
	Resolution			256		steps
	LSB	All gains		33.8		mV
	DNL		-1		2	LSB
	Error	Output referred offset error, all gains		±100		mV
	Offset adjust Range	Output referred, all gains	0.2		VDD – 0.2	V
	DAC settling time			480		μs
Programma	ble Gain Amplifier (PGA) 1st	Stage, $R_L = 10k\Omega$, $C_L = 15pF$				
IBIAS	Bias Current			5	200	pА
VINMAX _HGM	Max input signal High gain mode	Referenced to CMOUT voltage, it refers to the maximum voltage at the IN pin before clipping;		±2		mV
VINMAX _LGM	Max input signal Low gain mode	It includes dark voltage of the thermopile and signal voltage.		±12		mV
VOS	Input Offset Voltage			-165		μV
G_HGM	Gain High gain mode			250		V/V
G_LGM	Gain Low gain mode			42		V/V
GE	Gain Error	Both HGM and LGM		2.5		%
VOUT	Output Voltage Range		0.5		VDD – 0.5	V
PhDly	Phase Delay	1mV input step signal, HGM, Vout measured at Vdd/2		6		μs
TCPhDly	Phase Delay variation with Temperature	1mV input step signal, HGM, Vout measured at Vdd/2,		416		ns
SSBW	Small Signal Bandwidth	Vin = 1mVpp, Gain = 250 V/V		18		kHz
Cin	Input Capacitance			100		pF
Programma	ble Gain Amplifier (PGA) 2nd	Stage, $R_s = 1k\Omega$, $C_L = 1\mu F$				

Symbol	Parameter	Conditions	Min (<i>Note 6</i>)	Typ (<i>Note 5</i>)	Max (<i>Note 6</i>)	Units
VINMAX	Max input signal	GAIN = 4 V/V		1.65	<u> </u>	V
VINMIN	Min input signal			0.82		V
G	Gain	Programmable in 4 steps	4		32	V/V
GE	Gain Error	Any gain		2.5		%
VOUT	Output Voltage Range		0.2		VDD – 0.2	V
PhDly	Phase Delay	100mV input sine 35kHz signal, Gain = 8, VOUT measured at 1.65V, R_L = 10k Ω		1		μs
TCPhDly	Phase Delay variation with Temperature	250mV input step signal, Gain = 8, Vout measured at Vdd/2		84		ns
SSBW	Small Signal Bandwidth	Gain = 32 V/V		360		kHz
Cin	Input Capacitance			5		pF
CLOAD, OUT	OUT Pin Load Capacitance	Series RC		1		μF
RLOAD, OUT	OUT Pin Load Resistance	Series RC		1		kΩ
Combined	Amplifier Chain Specification				11	
		Combination of both current and voltage noise,				
en	Input-Referred Noise Density	with a 86k Ω source impedance at 5Hz, Gain = 7986		30		nV/√Hz
	Input-Referred Integrated Noise	Combination of both current and voltage noise, with a $86k\Omega$ source impedance 0.1Hz to 10Hz, Gain = 7986		0.1	0.12 (<i>Note 9</i>)	μVrms
		PGA1 GAIN = 42. $PGA2 GAIN = 4$		167		
		PGA1 GAIN = 42. PGA2 GAIN = 8		335		
		PGA1 GAIN = 42. PGA2 GAIN = 16		669		
		PGA1 GAIN = 42, PGA2 GAIN = 32		1335		
G	Gain	PGA1 GAIN = 250, PGA2 GAIN = 4		1002		V/V
		PGA1 GAIN = 250, PGA2 GAIN = 8		2004		
		PGA1 GAIN = 250, PGA2 GAIN = 16		4003		
		PGA1 GAIN = 250, PGA2 GAIN = 32		7986		
GE	Gain Error	Any gain		5		%
TCCGE	Gain Temp Coefficient (<i>Note</i> 7)				100	ppm/°C
PSRR	Power Supply Rejection Ratio	DC, 3.0V to 3.6V supply, gain = 1002V/V	90	110		dB
PhDly	Phase Delay	1mV input step signal, Gain = 1002, Vout measured at Vdd/2		9		μs
	Phase Delay variation with	1mV input step signal, Gain=1002, Vout				
CPhDly	Temperature (Note 8)	measured at Vdd/2			500	ns
		Gain = 167 V/V	-0.525		0.525	
		Gain = 335 V/V	-0.60		0.60	
		Gain = 669 V/V	-0.90		0.90	
TOVOO	Output Offset Voltage	Gain = 1335 V/V	-1.50		1.50	
10005	Temperature Drift (Note 7)	Gain = 1002 V/V	-1.20		1.20	mv/°C
		Gain = 2004 V/V	-1.90		1.90	
		Gain = 4003 V/V	-3.70		3.70	
		Gain = 7986V/V	-7.10		7.10	
Common M	Iode Generator					
		Programmable, see Common Mode		1.15 or		

Symbol	Parameter	Conditions	Min (<i>Note 6</i>)	Typ (<i>Note 5</i>)	Max (<i>Note 6</i>)	Units
	VCM accuracy			2		%
CLOAD	CMOut Load Capacitance			10		nF

SPI Interface (*Note 4*) The following specifications apply for VDD = 3.3V, VCM = 1.15V, $C_L = 15pF$, **Bold** values for $T_A = -40^{\circ}C$ to +85°C unless otherwise specified. All other limits apply to $T_A = T_J = +25^{\circ}C$.

Symbol	Parameter	Conditions	Min (<i>Note 6</i>)	Typ (<i>Note 5</i>)	Max (<i>Note 6</i>)	Units
V _{IH}	Logic Input High		0.7 × VDD			v
V _{IL}	Logic Input Low				0.8	V
V _{OH}	Logic Output High		2.6			V
V _{OL}	Logic Output Low				0.4	V
IIH/IIL	Input Digital Leakage Current		-100 -200		100 200	nA

Timing Characteristics (*Note 4*) The following specifications apply for VDD = 3.3V, VCM = 1.15V, $C_L = 15pF$, Bold values for $T_A = -40^{\circ}C$ to +85°C unless otherwise specified. All other limits apply to $T_A = T_J = +25^{\circ}C$.

Symbol	Parameter	Conditions	Min (<i>Note 6</i>)	Typ (<i>Note 5</i>)	Max (<i>Note 6</i>)	Units
t _{WU}	Wake up time			1		ms
f _{SCLK}	Serial Clock Frequency				10	MHz
t _{PH}	SCLK Pulse Width High		0.4/f _{SCLK}			ns
t _{PL}	SCLK Pulse Width Low		0.4/f _{SCLK}			ns
t _{CSS}	CSB Setup Time		10			ns
t _{CSH}	CSB Hold Time		10			ns
t _{SU}	SDI Setup Time prior to rise edge of SCLK		10			ns
t _{SH}	SDI Hold Time prior to rise edge of SCLK		10			ns
t _{DOD1}	SDO Disable Time after rise edge of CSB				45	ns
t _{DOD2}	SDO Disable Time after 16 th rise edge of SCLK				45	ns
t _{DOE}	SDO Enable Time from the fall edge of 8 th SCLK				35	ns
t _{DOA}	SDO Access Time after the fall edge of SCLK				35	ns
t _{DOH}	SDO hold time after the fall edge of SCLK		5			ns
t _{DOR}	SDO Rise time			5		ns
t _{DOF}	SDO Fall time			5		ns

Note 1: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur, including inoperability and degradation of device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in the Operating Ratings is not implied. Operating Ratings indicate conditions at which the device is functional and the device should not be operated beyond such conditions.

Note 2: Human Body Model, applicable std. MIL-STD-883, Method 3015.7. Machine Model, applicable std. JESD22-A115-A (ESD MM std. of JEDEC) Field-Induced Charge-Device Model, applicable std. JESD22-C101-C (ESD FICDM std. of JEDEC).

Note 3: The maximum power dissipation is a function of $T_{J(MAX)}$, θ_{JA} , and the ambient temperature, TA. The maximum allowable power dissipation at any ambient temperature is $P_{DMAX} = (T_{J(MAX)} - T_A)/\theta_{JA}$ All numbers apply for packages soldered directly onto a PC board.

Note 4: Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that $T_J = T_A$. No guarantee of parametric performance is indicated in the electrical tables under conditions of internal self-heating where $T_J > T_A$. Absolute Maximum Ratings indicate junction temperature limits beyond which the device may be permanently degraded, either mechanically or electrical tables under the tables under the device may be permanently degraded.

Note 5: Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not guaranteed on shipped production material.

Note 6: Limits are 100% production tested at 25°C. Limits over the operating temperature range are guaranteed through correlations using statistical quality control (SQC) method.

Note 7: TCCGE and TCVOS are calculated by taking the largest slope between -40°C and 25°C linear interpolation and 25°C and 85°C linear interpolation.

Note 8: TCPhDly is largest change in phase delay between -40°C and 25°C measurements and 25°C and 85°C measurements.

Note 9: Guaranteed by design and characterization. Not tested on shipped production material.

Timing Diagrams

FIGURE 4. SDO access time (t_{DOA}) and SDO hold time (t_{DOH}) after the fall edge of SCLK

FIGURE 7. SDO rise and fall times

Typical Performance Characteristics VDD = +3.3V, VCM = 1.15V, and T_A = 25°C unless otherwise noted

Gain = 335 V/V vs. Temperature

Phase Delay vs. Temperature

PGA ALL ON PGA2 ON PGA1 ON 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V)

1.5

1.0

0.5 0.0

2.5

30164131

Power Down Supply Current vs. Supply Voltage

Supply Current vs. Temperature

25

TEMPERATURE (°C)

50

75

-50

-25

0

30164142

100

301641100

PGA1 Small Signal Bandwidth

DAC DC Sweep

30164139

0

100m

1

10

FREQUENCY (Hz)

100

1k

10k

Functional Description

PROGRAMMABLE GAIN AMPLIFIER

The LMP91050 offers two programmable gain modes (low/ high) with four programmable gain settings each. The purpose of the gain mode is to enable thermopiles with larger dark voltage levels. All gain settings are accessible through bits GAIN1 and GAIN2[1:0]. The low gain mode has a range of 167 V/V to 1335 V/V while the high gain mode has a range of 1002 V/V to 7986 V/V. The PGA is referenced to the internally generated VCM. Input signal, referenced to this VCM voltage, should be within +/-2mV (see VINMAX_HGM specification) in high gain mode. In the low gain mode the first stage will provide a gain of 42 V/V instead of 250 V/V, thus allowing a larger maximum input signal up to +/-12mV (VINMAX_LGM).

TABLE 1. Gain Modes

Bit Symbol	Gain
CAINI	0: 250 (default)
GAINT	1: 42
	00: 4 (default)
CAINO [1:0]	01: 8
	10: 16
	11: 32

EXTERNAL FILTER

The LMP91050 offers two different measurement modes selectable through EXT_FILT bit. EXT_FILT bit is present in the

Device configuration register and is programmable through SPI.

TABLE	2.	Measurement	Modes
-------	----	-------------	-------

Bit Symbol	Measurement Mode
EXT_FILT	0: The signal from the thermopile is being processed by the internal PGAs, without additional external decoupling or filtering (default).
	1: The signal from the thermopile is being processed by the first internal PGA and fed to the A0 pin. An external low pass, high pass or band pass filter can be connected through pins A0, A1.

An external filter can be applied when $EXT_FILT = 1$. A typical band pass filter is shown in the picture below. Resistor and capacitor can be connected to the CMOUT pin of the

LMP91050 as shown. Discrete component values have been added for reference.

FIGURE 8. Typical Bandpass Filter

OFFSET ADJUST

Procedure of the offset adjust is to first measure the "dark signal", program the DAC to adjust, and then measure in a second cycle the residual of the dark signal for further signal manipulation within the μ C. The signal source is expected to have an offset component (dark signal) larger than the actual signal. During the "dark phase", the time when no light is de-

tected by the sensor, the μ C can program LMP91050 internal DAC to compensate for a measured offset. A low output offset voltage temperature drift (TCVOS) ensures system accuracy over temperature. See *Figure 9* below which plots the maximum TCVOS allowed over a given temperature drift in order to achieve n bit system accuracy.

30164144

FIGURE 9. System Accuracy vs. TCVOS and Temperature Drift

COMMON MODE GENERATION

As the sensor's offset is bipolar, there is a need to supply a VCM to the sensor. This can be programmed as 1.15V or 2.59V (approximately mid rail of 3.3V or 5V supply). It is not recommended to use 2.59V VCM with 3.3V supply

SPI INTERFACE

An SPI interface is available in order to program the device parameters like PGA gain of two stages, enabling external filter, enabling power for PGAs, offset adjust and common mode (VCM) voltage.

Interface Pins

The Serial Interface consists of SDIO (Serial Data Input / Output), SCLK (Serial Interface Clock) and CSB (Chip Select Bar). The serial interface is write-only by default. Read operations are supported after unlocking the SDIO_MODE_PASSWD. This is discussed in detail later in the document.

CSB

Chip Select is a active-low signal. CSB needs to be asserted throughout a transaction. That is, CSB should not pulse be-

tween the Instruction Byte and the Data Byte of a single transaction.

Note that CSB de-assertion always terminates an on-going transaction, if it is not already complete. Likewise, CSB assertion will always bring the device into a state, ready for next transaction, regardless of the termination status of a previous transaction.

CSB may be permanently tied low for a 2-wire SPI communication protocol.

SCLK

SCLK can idle High or Low for a write transaction. However, for a READ transaction, SCLK should idle high. SCLK features a Schmitt-triggered input and although it has hysterisis, it is recommened to keep SCLK as clean as possible to prevent glitches from inadvertently spoiling the SPI frame.

Communication Protocol

Communication on the SPI normally involves Write and Read transactions. Write transaction consists of single Write Command Byte, followed by single Data byte. The following figure shows the SPI Interface Protocol for write transaction.

For Read transactions, user first needs to write into a SDIO mode enable register for enabling the SPI read mode. Once the device is enabled for Reading, the data is driven out on the SDIO pin during the Data field of the Read Transaction.

SDIO pin is designed as a bidirectional pin for this purpose. Figure 6 shows the Read transaction. The sequence of commands that need to be issued by the SPI Master to enable SPI read mode is illustrated in *Figure 12*.

Registers Organization

Configuring the device is achieved using 'Write' of the designated registers in the device. All the registers are organized into individually addressable byte-long registers that have a unique address. The format of the Write/ Read instruction is as shown below.

TABLE 3. Write / Read Instruction Format

Bit[7]	Bit[6:4]	Bit[3:0]		
0 : Write Instruction	Decentred to 0	Address		
1 : Read Instruction	Reserved to 0			

Note: Specifying any value other than zero in Bit[6:4] is prohibited.

REGISTERS

This section describes the programmable registers and the associated programming sequence, if any, for the device. The

following table shows the summary listing of all the registers that are available to the user and their power-up values.

Title	Address (Hex)	Туре	Power-up/Reset Value (Hex)
Device Configuration	0x0	Read-Write	0x0
		(Read allowed in SDIO Mode)	
DAC Configuration	0x1	Read-Write	0x80
		(Read allowed in SDIO Mode)	
SDIO Mode Enable	0xF	Write-only	0x0

Note: Recommended values must be programmed where they are indicated in order to avoid unexpected results. Avoid writing to addresses not mentioned in the document; this could cause unexpected results.

Device Configuration – Device Configuration Register (Address 0x0)

Bit	Bit Symbol	Description
7	RESERVED	Reserved to 0.
	EN	00: PGA1 OFF PGA2 OFF (default)
[6:5]		01: PGA1 OFF, PGA2 ON
[0.5]		10: PGA1 ON, PGA2 OFF
		11: PGA1 ON, PGA2 ON
4	EXT_FILT	0: PGA1 to PGA2 direct (default)
4		1: PGA1 to PGA2 via external filter
3	CMN_MODE	0 : 1.15V (default)
		1 : 2.59V
		00: 4 (default)
[2:1]	GAIN2	01: 8
		10: 16
		11: 32
0	GAIN1	0: 250 (default)
		1: 42

DAC Configuration – DAC Configuration Register (Address 0x1)

The output DC level will shift according to the formula Vout_shift = -33.8mV * (NDAC - 128).

Bit	Bit Symbol	Description
[7:0]	NDAC	128 (0x80): Vout_shift = -33.8mV * (128 - 128) = 0mV (default)

SDIO Mode – SDIO Mode Enable Register (Address 0xf)

Write-only

Bit	Bit Symbol	Description	
[7:0]	SDIO_MODE_EN	To enter SDIO Mode, write the successive sequence 0xFE and 0xED.	
		Write anything other than this sequence to get out of mode.	

Notes

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated