

CY7S1061G, CY7S1061GE

16-Mbit (1 M words × 16 bit) Static RAM with Deep-Sleep Feature and Error-Correcting Code (ECC)

Features

- High speed
 - $\Box t_{AA} = 10 \text{ ns}$
- Ultra-low power Deep Sleep (DS) current
 □ I_{DS} = 22-µA maximum
- Low active and standby currents
 - □ I_{CC} = 90-mA typical
 - □ I_{SB2} = 20-mA typical
- Wide operating voltage range: 1.65 V to 2.2 V, 2.2 V to 3.6 V, and 4.5 V to 5.5 V
- Embedded error-correcting code (ECC) for single-bit error correction
- 1.0-V data retention
- Transistor-transistor logic (TTL) compatible inputs and outputs
- Error indication (ERR) pin to indicate 1-bit error detection and correction
- Available in Pb-free 48-pin TSOP I, 54-pin TSOP II, and 48-ball VFBGA packages

Functional Description

The CY7S1061G is a high-performance CMOS fast static RAM organized as 1,048,576 words by 16 bits. This device features fast access times (10 ns) and a unique ultra-low power Deep Sleep mode. With Sleep mode currents as low as 22 μA , the CY7S1061G device combines the best features of fast and low-power SRAM in industry-standard package options. The device also features embedded ECC $^{[1]}$. ECC logic can detect and correct single-bit error in the accessed location. The CY7S1061GE device includes an ERR pin that signals an error-detection and correction event during a read cycle

To access devices with a single-chip enable input, assert the chip enable input (CE) LOW. To access dual chip enable devices, assert both chip enable inputs – \overline{CE}_1 as LOW and \overline{CE}_2 as HIGH.

To perform data writes, assert the Write Enable ($\overline{\text{WE}}$) input LOW, and provide the data and address on device data pins (I/O_0 through I/O_{15}) and address pins (A_0 through A_{19}) respectively. The Byte High Enable ($\overline{\text{BHE}}$) and Byte Low Enable ($\overline{\text{BLE}}$) inputs control byte writes, and write data on the corresponding I/O lines to the memory location specified. $\overline{\text{BHE}}$ controls I/O₈ through I/O₁₅ and $\overline{\text{BLE}}$ controls I/O₀ through I/O₇.

To perform data reads, assert the Output Enable (\overline{OE}) input and provide the required address on the address lines. Read data is accessible on the I/O lines (I/O $_0$ through I/O $_{15}$). You can perform byte accesses by asserting the required byte enable signal (BHE or BLE) to read either the upper byte or the lower byte of data from the specified address location.

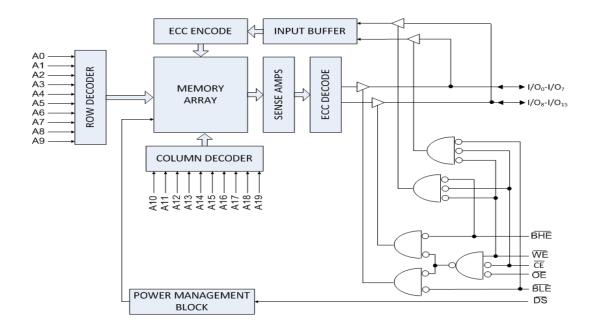
All I/Os (I/O₀ through I/O₁₅) are <u>placed</u> in a high-impedance state when the device is deselected (CE HIGH for single chip enable devices and CE₁ HIGH and CE₂ LOW for dual chip enable devices), or the control signals (OE, BLE, BHE) are de-asserted.

The device is placed in a low power Deep Sleep mode when the Deep Sleep pin (DS) is LOW. In this state, the device is disabled for normal operation and is placed in a data retention mode. The device can be activated by de-asserting the Deep Sleep pin (DS HIGH).

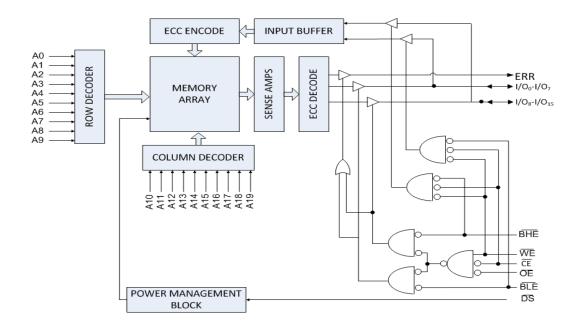
The CY7S1061G is available in 48-pin TSOP I, 54-pin TSOP II, and 48-ball VFBGA packages.

Product Portfolio

						Currer	nt Consum	otion		
Product	Range	V _{CC} Range (V)	Speed (ns)	Operating I _{CC} (mA)		Standby, I _{SB2} (mA)		Deep-Sleep Current (μA)		
			(113)		max					
				Typ [2]	Max	Typ ^[2]	Max	Typ ^[1]	Max	
CY7S1061G18	Industrial	1.65 V-2.2 V	15	70	80	20	30	8	22	
CY7S1061G(E)30		2.2 V-3.6 V	10	90	110					
CY7S1061G		4.5–5.5 V	10	90	110					


Notes

1. This device does not support automatic write-back on error detection.


Typical values are included only for reference and are not guaranteed or tested. Typical values are measured at V_{CC} = 1.8 V (for a V_{CC} range of 1.65 V-2.2 V), V_{CC} = 3 V (for a V_{CC} range of 2.2 V-3.6 V), and V_{CC} = 5 V (for a V_{CC} range of 4.5 V-5.5 V), T_A = 25 °C.

Logic Block Diagram - CY7S1061G

Logic Block Diagram - CY7S1061GE

Contents

Pin Configurations	4
Maximum Ratings	6
Operating Range	6
DC Electrical Characteristics	6
Capacitance	7
Thermal Resistance	7
AC Test Loads and Waveforms	7
Data Retention Characteristics	8
Data Retention Waveform	8
Deep-Sleep Mode Characteristics	9
AC Switching Characteristics	
Switching Waveforms	11
Truth Table	15
ERR Output - CY7S1061GE	15
Ordering Information	
Ordering Code Definitions	

Package Diagrams	1
Acronyms	20
Document Conventions	
Units of Measure	2
Errata	2 [.]
Part Numbers Affected	2 [.]
FAST SRAM[45] Qualification Status	2
FAST SRAM[45] Errata Summary	2 [.]
AC Switching Characteristics	
Document History Page	23
Sales, Solutions, and Legal Information	
Worldwide Sales and Design Support	20
Products	20
PSoC® Solutions	20
Cypress Developer Community	20
Technical Support	20

Pin Configurations

Figure 1. 48-ball VFBGA (6 × 8 × 1.0 mm) pinout (Top View) [3]

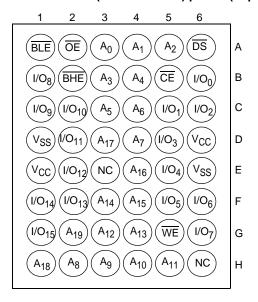
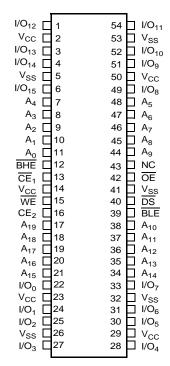



Figure 2. 54-pin TSOP II (22.4 × 11.84 × 1.0 mm) pinout [3]

Note

3. NC pins are not connected internally to the die.

Pin Configurations (continued)

Figure 3. 48-pin TSOP I (12 \times 18.4 \times 1 mm) pinout (Top View) [4]

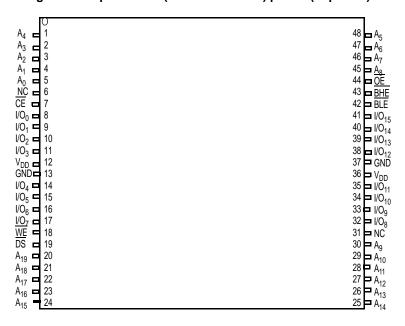
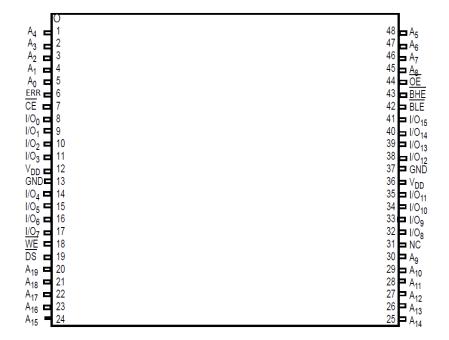



Figure 4. 48-pin TSOP I (12 x 18.4 x 1 mm) pinout, ERR output at pin 6 (Top View)

Note

4. NC pins are not connected internally to the die.

Maximum Ratings

Exceeding maximum ratings may impair the useful life of the device. These user guidelines are not tested. Storage temperature-65 °C to +150 °C Ambient temperature with power applied -55 °C to +125 °C Supply voltage on V_{CC} relative to ${\rm GND}^{[5]}$ –0.5 V to +6.0 V DC voltage applied to outputs in High Z State $^{[5]}$ –0.5 V to V $_{\rm CC}$ + 0.5 V

DC input voltage ^[5]	0.5 V to V _{CC} + 0.5 V
Current into outputs (LOW)	20 mA
Static discharge voltage (MIL-STD-883, Method 3015)	>2001 V
Latch-up current	> 140 mA

Operating Range

Range	Ambient Temperature	V _{CC}
Industrial	–40 °C to +85 °C	1.65 V to 2.2 V, 2.2 V to 3.6 V, 4.5 V to 5.5 V

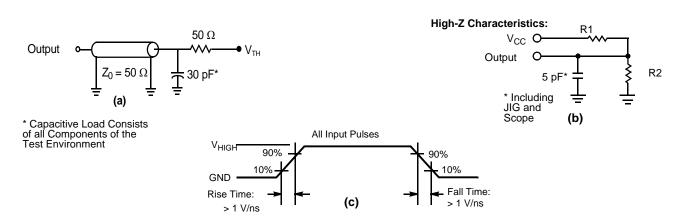
DC Electrical Characteristics

Over the operating range of -40 °C to +85 °C

Parameter Description			т.	nat Canalitiana	1	10 ns / 15	ns	Unit
Parameter	Desc	cription	16	est Conditions	Min	Typ ^[8]	Max	Unit
V _{OH}		1.65 V to 2.2 V	V _{CC} = Min, I _{OH} =	= −0.1 mA	1.4	_	_	V
	voltage	2.2 V to 2.7 V	V _{CC} = Min, I _{OH} =	= –1.0 mA	2.0	_	-	
		2.7 V to 3.6 V	V _{CC} = Min, I _{OH} =	= –4.0 mA	2.2	-	-	
		4.5 V to 5.5 V	V _{CC} = Min, I _{OH} =	= –4.0 mA	2.4	-	-	
V _{OL}	Output LOW	1.65 V to 2.2 V	$V_{CC} = Min, I_{OL} =$	$V_{CC} = Min, I_{OL} = 0.1 \text{ mA}$		-	0.2	V
	voltage	2.2 V to 2.7 V	V _{CC} = Min, I _{OL} =	2 mA	_	_	0.4	
		2.7 V to 3.6 V	V _{CC} = Min, I _{OL} =	8 mA	_	_	0.4	
		4.5 V to 5.5 V	V _{CC} = Min, I _{OL} =	8 mA	_	_	0.4	
V _{IH} ^[5, 6]	Input HIGH	1.65 V to 2.2 V	_		1.4	_	V _{CC} + 0.2	V
	voltage	2.2 V to 2.7 V	_		2.0	_	$V_{CC} + 0.3$	
		2.7 V to 3.6 V	_		2.0	_	$V_{CC} + 0.3$	
		4.5 V to 5.5 V	_		2.2	_	V _{CC} + 0.5	
V _{IL} [5, 6]	Input LOW	1.65 V to 2.2 V	_		-0.2	_	0.4	V
	voltage	2.2 V to 2.7 V	_		-0.3	_	0.6	
		2.7 V to 3.6 V	_		-0.3	_	0.8	
		4.5 V to 5.5 V	_		-0.5	_	0.8	
I _{IX}	Input leakage	current	$GND \leq V_{IN} \leq V_{C}$	С	-1.0	_	+1.0	μΑ
I _{OZ}	Output leakag	ge current		CC, Output disabled	-1.0	_	+1.0	μА
I _{CC}	V _{CC} operating	g supply current	$V_{CC} = Max,$	f = 100 MHz	_	90.0	110.0	mΑ
			I _{OUT} = 0 mA, CMOS levels	f = 66.7 MHz	-	70.0	80.0	
I _{SB1}	Standby curre	ent – TTL inputs	$\begin{aligned} &\text{Max V}_{\text{CC}}, \overline{\text{CE}^{[7]}} \geq \text{V}_{\text{IH}}, \\ &\text{V}_{\text{IN}} \geq \text{V}_{\text{IH}} \text{ or V}_{\text{IN}} \leq \text{V}_{\text{IL}}, \text{ f} = \text{f}_{\text{MAX}} \end{aligned}$		_	_	40.0	mA
I _{SB2}	Standby curre inputs	ent – CMOS	$\begin{array}{ll} \text{Max V}_{CC}, \overline{\text{CE}^{[7]}} \geq \text{V}_{CC} - 0.2 \text{V}, \overline{\text{DS}} \geq \text{V}_{CC} - 0.2 \text{V}, \\ \text{V}_{\text{IN}} \geq \text{V}_{CC} - 0.2 \text{V or V}_{\text{IN}} \leq 0.2 \text{V}, \text{f} = 0 \end{array}$		-	20.0	30.0	mA
I _{DS}	Deep-Sleep o	current	Max V _{CC} , CE ^[7]	\geq V _{CC} - 0.2 V, $\overline{DS} \leq$ 0.2 V, V or V _{IN} \leq 0.2 V, f = 0	_	8.0	22.0	μA

- 5. V_{IL} (min) = -2.0 V and V_{IH} (max) = V_{CC} + 2 V for pulse durations of less than 2 ns. 6. For \overline{DS} pin, V_{IH} (min) is V_{CC} 0.2 V and V_{IL} (max) is 0.2 V.
- 7. For all dual chip enable devices, \overline{CE} is the logical combination of \overline{CE}_1 and \overline{CE}_2 . When \overline{CE}_1 is LOW and \overline{CE}_2 is HIGH, \overline{CE} is LOW; when \overline{CE}_1 is HIGH or \overline{CE}_2 is HIGH.
- 8. Typical values are included only for reference and are not guaranteed or tested. Typical values are measured at $V_{CC} = 1.8 \text{ V}$ (for a V_{CC} range of 1.65 V-2.2 V), V_{CC} = 3 V (for a V_{CC} range of 2.2 V–3.6 V), and V_{CC} = 5 V (for a V_{CC} range of 4.5 V–5.5 V), T_A = 25 °C.

Capacitance


Parameter [9]	Description	Test Conditions	All packages	Unit
C _{IN}	Input capacitance	$T_A = 25 ^{\circ}\text{C}$, $f = 1 \text{MHz}$, $V_{CC(typ)}$	10	pF
C _{OUT}	I/O capacitance		10	pF

Thermal Resistance

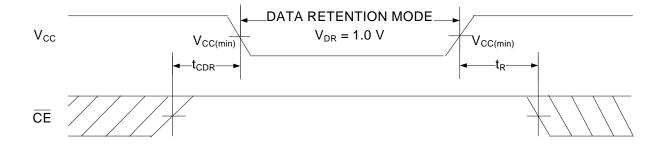
Parameter [9]	Description	Test Conditions	48-ball VFBGA	54-pin TSOP II	48-pin TSOP I	Unit
Θ_{JA}		Still air, soldered on a 3 x 4.5 inch, four layer printed circuit board	31.50	93.63	57.99	°C/W
$\Theta_{\sf JC}$	Thermal resistance (junction to case)		15.75	21.58	13.42	°C/W

AC Test Loads and Waveforms

Figure 5. AC Test Loads and Waveforms^[10]

Parameters	1.8 V	3.0 V	5.0 V	Unit
R1	1667	317	317	Ω
R2	1538	351	351	Ω
V_{TH}	V _{CC} /2	1.5	1.5	V
V _{HIGH}	1.8	3.0	3.0	V

Tested initially and after any design or process changes that may affect these parameters.
 Full-device AC operation assumes a 100-μs ramp time from 0 to V_{CC} (min) and 100-μs wait time after V_{CC} stabilizes to its operational value.


Data Retention Characteristics

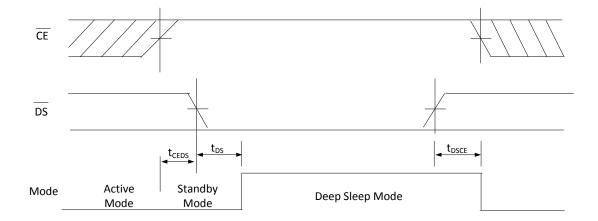
Over the Operating Range of -40 °C to +85 °C

Parameter	Description	Conditions	Min	Max	Unit
V_{DR}	V _{CC} for data retention		1.0	_	V
I _{CCDR}	Data retention current	$\begin{aligned} & V_{CC} = V_{DR}, \overline{CE} \ge V_{CC} - 0.2 \text{ V}, \overline{DS} \ge V_{CC} - 0.2 \text{ V}, \\ & V_{IN} \ge V_{CC} - 0.2 \text{ V or } V_{IN} \le 0.2 \text{ V} \end{aligned}$	-	30.0	mA
t _{CDR} ^[11]	Chip deselect to data retention time		0	_	ns
t _R ^[11]	Operation recovery time	2.2 V < V _{CC} ≤ 5.5 V	10.0	_	ns
		V _{CC} ≤ 2.2 V	15.0	_	ns

Data Retention Waveform

Figure 6. Data Retention Waveform^[12, 13]

Notes
 11. Tested initially and after any design or process changes that may affect these parameters.
 12. Full device operation requires linear V_{CC} ramp from V_{DR} to V_{CC} (min) ≥ 100 μs or stable at V_{CC} (min) ≥ 100 μs.
 13. For all dual chip enable devices, CE is the logical combination of CE₁ and CE₂. When CE₁ is LOW and CE₂ is HIGH, CE is LOW; when CE₁ is HIGH or CE₂ is LOW, CE is HIGH.



Deep-Sleep Mode Characteristics

Over the Operating Range of -40 °C to +85 °C

Parameter	Description	Conditions	Min	Max	Unit
I _{DS}	Deep Sleep Mode current	$\begin{aligned} & V_{CC}\!=\!V_{CC}(\text{max}), \overline{CE}^{[14]}\!\geq\!V_{CC}-0.2\text{V}, \overline{DS}\!\leq\!0.2\text{V}, \\ & V_{IN}\!\geq\!V_{CC}-0.2\text{V or }V_{IN}\!\leq\!0.2\text{V} \end{aligned}$	-	22	μA
t _{CEDS} [14]	Time between de-assertion of CE ^[14] and assertion of DS		100	_	ns
t _{DS} [14]	DS assertion to Deep-Sleep mode transition time		_	1	ms
t _{DSCE} [14]	Time between de-assertion of DS and assertion of CE ^[14]		1	-	ms

Figure 7. Active, Standby, and Deep-Sleep Operation Modes [15]

^{14.} Address, data, and control lines should not toggle within t_{DS}. The<u>y should</u> be fixed to <u>one</u> of the logic levels- V_{IH} or V_{IL}

15. <u>For</u> all dual chip enable devices, CE is the logical combination of CE₁ and CE₂. When CE₁ is LOW and CE₂ is HIGH, CE is LOW; when CE₁ is HIGH or CE₂ is LOW, CE is HIGH.

AC Switching Characteristics

Over the operating range of -40 °C to +85 °C

Parameter [16]	Book Barrier	10	ns	15 ns		11!1
Parameter [10]	Description	Min	Max	Min	Max	Unit
Read Cycle			•	•	•	
t _{power}	V _{CC} (stable) to the first access ^[17]	100.0	-	100.0	-	μs
t _{RC}	Read cycle time	10.0	-	15.0	_	ns
t _{AA}	Address to data valid / ERR valid	_	10.0	_	15.0	ns
t _{OHA}	Data / ERR hold from address change	3.0	-	3.0	_	ns
t _{ACE}	CE LOW to data valid / ERR valid	_	10.0	_	15.0	ns
t _{DOE}	OE LOW to data valid / ERR valid	_	5.0	_	8.0	ns
t _{LZOE}	OE LOW to low-Z ^[18, 19]	0	_	1.0	_	ns
t _{HZOE}	OE HIGH to high-Z ^[18, 19]	_	5.0	_	8.0	ns
t _{LZCE}	CE LOW to low-Z ^[18, 19, 20]	3.0	_	3.0	_	ns
t _{HZCE}	CE HIGH to high-Z ^[18, 19, 20]	_	5.0	_	8.0	ns
t _{PU}	CE LOW to power-up ^[21]	0	_	0	_	ns
t _{PD}	CE HIGH to power-down ^[21]	_	10.0	_	15.0	ns
t _{DBE}	Byte enable to data valid	_	5.0	_	8.0	ns
t _{LZBE}	Byte enable to low-Z ^[18, 19]	0	-	1.0	_	ns
t _{HZBE}	Byte disable to high-Z ^[18, 19]	_	5.0	_	8.0	ns
Write Cycle ^{[22,}	23]					
t _{WC}	Write cycle time	10.0	_	15.0	_	ns
t _{SCE}	CE LOW to write end [20]	7.0	-	12.0	_	ns
t _{AW}	Address setup to write end	7.0	-	12.0	_	ns
t _{HA}	Address hold from write end	0	-	0	_	ns
t _{SA}	Address setup to write start	0	-	0	_	ns
t _{PWE}	WE pulse width	7.0	-	12.0	_	ns
t _{SD}	Data setup to write end	5.0	-	8.0	_	ns
t _{HD}	Data hold from write end	0	_	0	_	ns
t _{LZWE}	WE HIGH to low-Z [18, 19]	3.0	_	3.0	_	ns
t _{HZWE}	WE LOW to high-Z ^[18, 19]	-	5.0	_	8.0	ns
t _{BW}	Byte Enable to End of Write	7.0	_	12.0	_	ns

Notes

^{16.} Test conditions assume signal transition time (rise/fall) of 3 ns or less, timing reference levels of 1.5 V (for V_{CC} ≥ 3 V) and V_{CC}/2 (for V_{CC} < 3 V), and input pulse levels of 0 to 3 V (for V_{CC} ≥ 3 V), and 0 to V_{CC} (for V_{CC} < 3V). Test conditions for the read cycle use the output loading shown in part (a) of Figure 5 on page 7, unless specified otherwise 17. t_{POWER} gives the minimum amount of time that the power supply is at stable V_{CC} until the first memory access is performed 18. t_{HZOE}, t_{HZWE}, t_{HZDE}, t_{LZCE}, t_{LZCE}, t_{LZCE}, and t_{LZBE} are specified with a load capacitance of 5 pF, as shown in part (b) of Figure 5 on page 7. Transition is measured ±200 mV from the context of the conte

^{19.} At any temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZBE} is less than t_{LZE}, t_{HZOE} is less than t_{LZCE}, and t_{HZWE} is less than t_{LZWE} for any device.

20. For all dual chip enable devices, CE is the logical combination of CE₁ and CE₂. When CE₁ is LOW and CE₂ is HIGH, CE is LOW; when CE₁ is HIGH or CE₂ is LOW, CE is HIGH.

^{21.} These parameters are guaranteed by design and are not tested.

^{22.} The internal write time of the memory is defined by the overlap of WE = V_{IL}, CE = V_{IL}, and BHE or BLE = V_{IL}. These signals must be LOW to initiate a write, and the HIGH transition of any of these signals can terminate the operation. The input data setup and hold timing should be referenced to the edge of the signal that terminates

^{23.} The minimum write pulse width for Write Cycle No. 2 ($\overline{\text{WE}}$ controlled, $\overline{\text{OE}}$ LOW) should be the sum of t_{HZWE} and t_{SD} .

Switching Waveforms

Figure 8. Read Cycle No. 1 of CY7S1061G(Address Transition Controlled) [24, 25]

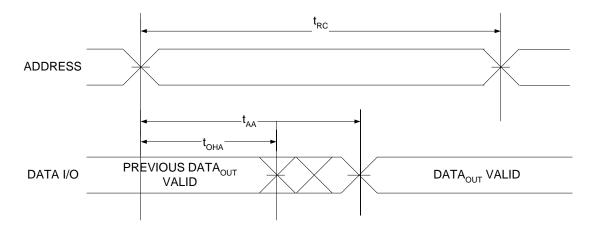
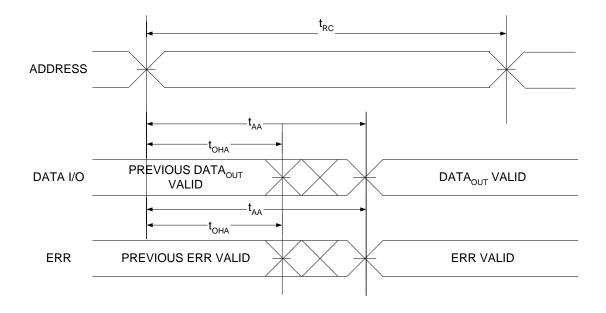



Figure 9. Read Cycle No. 2 of CY7S1061GE (Address Transition Controlled) $^{[24,\,25]}$

Notes

^{24.} The device is continuously selected. $\overline{OE} = V_{|L}$, $\overline{CE} = V_{|L}$, \overline{BHE} or \overline{BLE} or both = $V_{|L}$. 25. \overline{WE} is HIGH for read cycle.

Switching Waveforms (continued)

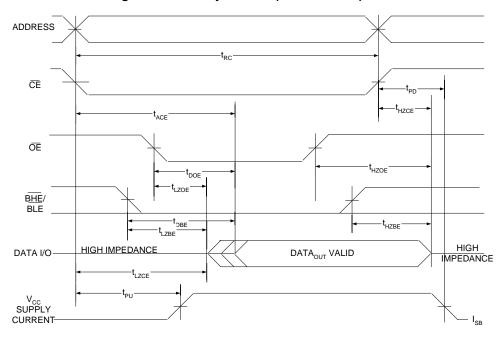
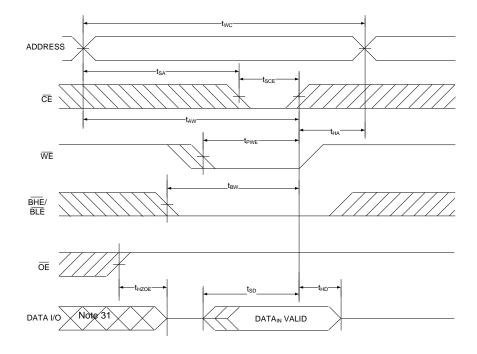
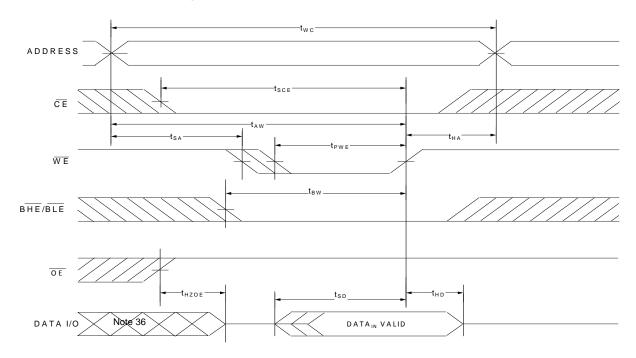



Figure 11. Write Cycle No. 1 (CE Controlled) [27, 29, 30]

- Notes

 26. WE is HIGH for read cycle.

 27. For all dual chip enable devices, CE is the logical combination of CE₁ and CE₂. When CE₁ is LOW and CE₂ is HIGH, CE is LOW; when CE₁ is HIGH or CE₂ is LOW, CE is HIGH.
- 29. The internal write time of the memory is defined by the overlap of WE = V_{IL}, CE = V_{IL} and BHE or BLE = V_{IL}. These signals must be LOW to initiate a write, and the HIGH transition of any of these signals can terminate the operation. The input data setup and hold timing should be referenced to the edge of the signal that terminates the write.
- 30. Data I/O is in high-impedance state if $\overline{CE} = V_{IH}$, or $\overline{OE} = V_{IH}$ or \overline{BHE} , and/or $\overline{BLE} = V_{IH}$.
- 31. During this period, the I/Os are in output state. Do not apply input signals.



Switching Waveforms (continued)

Figure 12. Write Cycle No. 2 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW) $^{[32,\ 33,\ 34,\ 35]}$

Figure 13. Write Cycle No. 3 (WE controlled)[32, 34, 35]

^{32.} For all dual chip enable devices, $\overline{\text{CE}}$ is the logical combination of $\overline{\text{CE}}_1$ and $\overline{\text{CE}}_2$. When $\overline{\text{CE}}_1$ is LOW and $\overline{\text{CE}}_2$ is HIGH, $\overline{\text{CE}}$ is LOW; when $\overline{\text{CE}}_1$ is HIGH or $\overline{\text{CE}}_2$ is LOW, $\overline{\text{CE}}$ is HIGH.

^{33.} The minimum write pulse width for Write Cycle No. 2 (WE controlled, OE LOW) should be <u>sum</u> of t_{HZWE} and t_{SD}.

34. The internal write time of the memory is defined by the overlap of WE = V_{IL}, CE = V_{IL} and BHE or BLE = V_{IL}. These signals must be LOW to initiate a write, and the HIGH transition of any of these signals can terminate the operation. The input data setup and hold timing should be referenced to the edge of the signal that terminates

^{35.} Data I/O is in high-impedance state if $\overline{CE} = V_{IH}$, or $\overline{OE} = V_{IH}$ or \overline{BHE} , and/or $\overline{BLE} = V_{IH}$. 36. During this period, the I/Os are in output state. Do not apply input signals.

Switching Waveforms (continued)

Figure 14. Write Cycle No. 3 (BLE or BHE Controlled) [37, 38, 39]

^{37.} For all dual chip enable devices, \overline{CE} is the logical combination of \overline{CE}_1 and \overline{CE}_2 . When \overline{CE}_1 is LOW and \overline{CE}_2 is HIGH, \overline{CE} is LOW; when \overline{CE}_1 is HIGH or \overline{CE}_2 is LOW, \overline{CE} is HIGH.

38. The internal write time of the memory is defined by the overlap of $\overline{WE} = V_{IL}$, $\overline{CE} = V_{IL}$ and \overline{BHE} or $\overline{BLE} = V_{IL}$. These signals must be LOW to initiate a write, and the HIGH transition of any of these signals can terminate the operation. The input data setup and hold timing should be referenced to the edge of the signal that terminates

^{39.} Data I/O is in high-impedance state if $\overline{CE} = V_{IH}$, or $\overline{OE} = V_{IH}$, or \overline{BHE} , and/or $\overline{BLE} = V_{IH}$.

^{40.} During this period, the I/Os are in output state. Do not apply input signals.

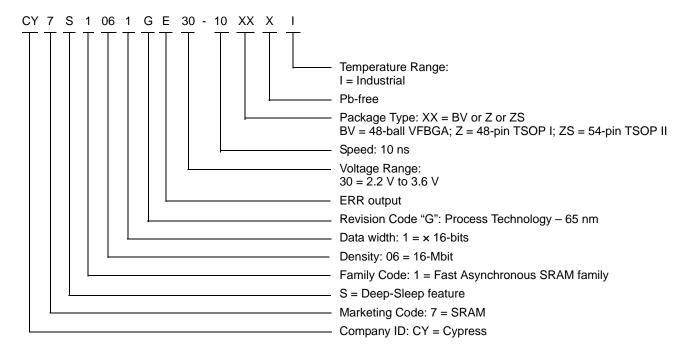
Truth Table

DS	CE	OE	WE	BLE	BHE	I/O ₀ -I/O ₇	I/O ₈ -I/O ₁₅	Mode	Power
Н	Η	X ^[41]	X ^[41]	X ^[41]	X ^[41]	High-Z	High-Z	Standby	Standby (I _{SB})
Н	L	L	Τ	L	L	Data out	Data out	Read all bits	Active (I _{CC})
Н	L	L	Н	L	Н	Data out	High-Z	Read lower bits only	Active (I _{CC})
Н	L	L	Н	Н	L	High-Z	Data out	Read upper bits only	Active (I _{CC})
Н	L	Х	L	L	L	Data in	Data in	Write all bits	Active (I _{CC})
Н	L	Х	L	L	Н	Data in	High-Z	Write lower bits only	Active (I _{CC})
Н	L	Χ	L	Н	L	High-Z	Data in Write upper bits only Active (I _{CC})		Active (I _{CC})
Н	L	Н	Н	Х	Х	High-Z	High-Z	Z Selected, outputs disabled Active (I _{CC})	
L ^[42]	Н	Χ	Χ	Х	Х	High-Z	High-Z	Deep Sleep	Deep-Sleep Ultra Low Power (I _{DS})
L	L	Х	Х	Х	Х	_	_	- Invalid mode ^[43] -	
Н	L	Х	Х	Н	Н	High-Z	High-Z	Selected, outputs disabled	Active (I _{CC})

ERR Output - CY7S1061GE

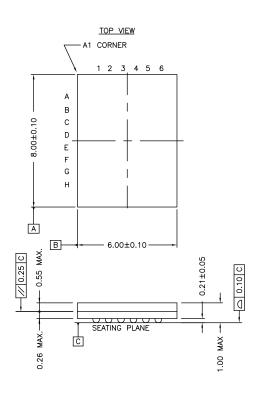
Output	Mode			
0 Read operation, no single-bit error in the stored data.				
1	Read operation, single-bit error detected and corrected.			
High-Z	Device deselected or outputs disabled or Write operation			

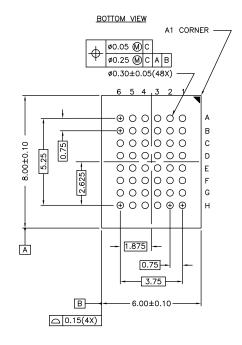
Notes


^{41.} The input voltage levels on these pins should be either at V_{IH} or V_{IL}.
42. V_{IL} on DS must be ≤ 0.2 V.
43. This mode does not guarantee data retention. Power cycling needs to be performed for the device to return to normal operation.

Ordering Information

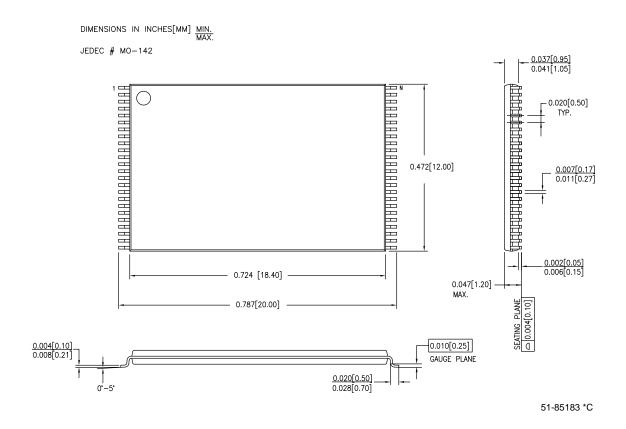
Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
10	CY7S1061G30-10BVXI	51-85150	48-ball VFBGA (6 x 8 x 1.0 mm) (Pb-free)	Industrial
	CY7S1061G30-10ZXI	51-85183	48-pin TSOP I (12 × 18.4 × 1.0 mm) (Pb-free)	
	CY7S1061G30-10ZSXI	51-85160	54-pin TSOP II (22.4 × 11.84 × 1.0 mm) (Pb-free)	
	CY7S1061GE30-10ZXI	51-85183	48-pin TSOP I (12 \times 18.4 \times 1.0 mm) (Pb-free), ERR output at pin 6	


Ordering Code Definitions



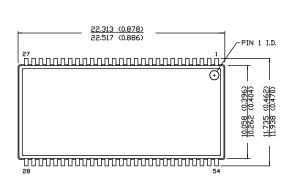
Package Diagrams

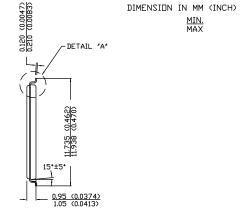
Figure 15. 48-ball VFBGA (6 × 8 × 1.0 mm) BV48/BZ48 Package Outline, 51-85150

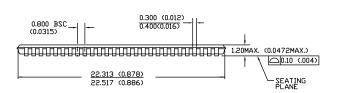

NOTE:

51-85150 *H

Package Diagrams (continued)


Figure 16. 48-pin TSOP I (12 × 18.4 × 1.0 mm) Z48A Package Outline, 51-85183





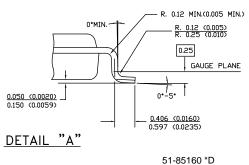

Package Diagrams (continued)

Figure 17. 54-pin TSOP II (22.4 × 11.84 × 1.0 mm) Z54-II Package Outline, 51-85160

Acronyms

Acronym	Description					
BHE	Byte High Enable					
BLE	Byte Low Enable					
CE	Chip Enable					
CMOS	Complementary Metal Oxide Semiconductor					
I/O	Input/output					
ŌĒ	Output Enable					
SRAM	Static random access memory					
TTL	Transistor-transistor logic					
VFBGA	Very fine-pitch ball grid array					
WE	Write Enable					

Document Conventions

Units of Measure

Symbol	Unit of Measure						
°C	degree Celsius						
MHz	megahertz						
μΑ	microampere						
μS	microsecond						
mA	milliampere						
mm	millimeter						
ns	nanosecond						
Ω	ohm						
%	percent						
pF	picofarad						
V	volt						
W	watt						

Errata

This section describes the errata for the 16-Mbit asynchronous FAST SRAM - CY7S1061G30 and CY7S1061GE30 - in 65-nm process technology. Details include errata trigger conditions, scope of impact, available workaround, and silicon revision applicability. Compare this document to the device's datasheet for a complete functional description.

If you have questions, contact your local Cypress Sales Representative or raise a technical support case at www.cypress.com/go/support.

Part Numbers Affected

Part Number	Device Characteristics
CY7S1061G30 (all packages and options)	16-Mbit FAST SRAM
CY7S1061GE30 (all packages and options)	16-Mbit FAST SRAM

FAST SRAM^[44] Qualification Status

Product Status: All Engineering Samples (**Note:** Reliability qualification is not complete. These samples are recommended to be used only for engineering builds and evaluation, and not for production builds).

FAST SRAM^[44] Errata Summary

This table defines the errata applicability to available 16-Mbit devices.

Items	Part Numbers	Silicon Rev	Fix Status
FAST SRAM [44] does not meet 10-ns speed-in AC switching parameters as specified in the datasheet specifications.	CY7S1061G30 CY7S1061GE30	*A	Fixed devices to be available from April 11, 2014.

■ Problem Definition

CY7S1061G30 and CY7S1061GE30 do not meet 10-ns speed in AC switching parameters as specified in Table 1.

■ Parameters Affected

AC switching parameters

■ Trigger Condition

Functionality is not guaranteed when the device is operated at speed of 10 ns.

■ Scope of Impact

This issue may not pose problems for most end systems because they may incorporate some margin to the datasheet specifications. The deviation from the datasheet specified limit of 10 ns is 2 ns.

■ Workaround

The RAM controller timing needs additional margin to accommodate the slower speed.

■ Fix Status

The fix for the above issue is in progress. Fixed devices will be available from April 11, 2014.

Note

44. This applies to all MPNs mentioned in Part Numbers Affected.

Document Number: 001-79707 Rev. *G Page 21 of 26

AC Switching Characteristics

Table 1. Comparison of AC Switching Parameters for 10 ns and 12 ns part

D	Description.	-10	−10 ns			1114
Parameter	Description	Min	Max	Min	Max	Unit
Read Cycle			•	•	•	•
t _{RC}	Read cycle time	10	_	12	_	ns
t _{AA}	Address to data valid	_	10	-	12	ns
t _{OHA}	Data hold from address change	3	_	3	_	ns
t _{ACE}	CE Low to data valid	_	10	-	12	ns
t _{DOE}	OE Low to data valid	_	5	-	7	ns
t _{LZOE}	OE Low to low-Z	1	_	1	_	ns
t _{HZOE}	OE High to high-Z	_	5	-	7	ns
t _{LZCE}	CE Low to low-Z	3	_	3	_	ns
t _{HZCE}	CE High to high-Z	_	5	-	7	ns
t _{PU}	CE Low to power-up	0	_	0	_	ns
t _{PD}	CE High to power-down	_	10	-	12	ns
t _{DBE}	Byte Enable to data valid	_	5	-	7	ns
t _{LZBE}	Byte Enable to low-Z	1	_	1	_	ns
t _{HZBE}	Byte Disable to high-Z	_	6	_	7	ns
Write Cycle						
t _{WC}	Write cycle time	10	_	12	_	ns
t _{SCE}	CE Low to write end	7	_	9	_	ns
t _{AW}	Address setup to write end	7	_	9	_	ns
t _{HA}	Address hold from write end	0	_	0	_	ns
t _{SA}	Address setup to write start	0	_	0	_	ns
t _{PWE}	WE pulse width	7	_	9	_	ns
t _{SD}	Data setup to write end	5	_	7	_	ns
t _{HD}	Data hold from write end	0	_	0	_	ns
t _{LZWE}	WE High to low-Z	3	-	3	_	ns
t _{HZWE}	WE Low to high-Z	_	5	_	7	ns
t _{BW}	Byte Enable to end of write	7	_	9	_	ns

Document History Page

orrecting	Title: CY7S1 Code (ECC) Number: 00		1061GE, 16-M	bit (1 M words × 16 bit) Static RAM with Deep-Sleep Feature and Error
Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change
**	3656657	TAVA	06/26/2012	New data sheet.
*A	3776318	AJU	10/30/2012	Updated Document Title to "16-Mbit (1 M words × 16 bit) Static RAM with Deep-Sleep Feature".
				Updated Features: Highlighted typical and standby currents. Changed operating voltage range from "1.65 V to 5.5 V" to "1.65 V to 2.2 V, 2.2 V to 3.6 V, 4.5 V to 5.5 V". Added 48-pin TSOP I and 54-pin TSOP II pinouts, packages, and all related parameters.
				Updated Functional Description (for better clarity).
				Removed Selection Guide.
				Updated Logic Block Diagram - CY7S1061G (for better clarity).
				Updated Pin Configurations:
				Updated Note 3 (for better clarity).
				Updated Product Portfolio to list all product options. Added typical values for I_{CC} and I_{SB2} parameters. Split V_{CC} range in the second row from "2.2 V–5.5 V" into two rows namely "2.2 V–3.6 V" and "4.5 V to 5.5 V". Updated Note 1 for better clarity.
				Updated Operating Range: Changed V_{CC} from "1.65 V to 5.5 V" to "1.65 V to 2.2 V, 2.2 V to 3.6 V, 4.5 V to 5.5 V". Changed latch up current limit from 200 to 140 mA (per JEDEC limits).
				Updated DC Electrical Characteristics: Changed maximum value of I_{CC} parameter from 100 mA to 110 mA for the Test Condition f = 100 MHz. Changed maximum value of I_{SB1} parameter from 30 mA to 40 mA. Changed maximum value of I_{SB2} parameter from 25 mA to 30 mA. Updated I_{SB2} and I_{DS} test conditions to reflect correct CMOS input levels. Added footnotes 6 and 7.
				Updated Capacitance (Changed C _{IN} and C _{OUT} values from 8 pF to 10 pF).
				Updated Thermal Resistance (Changed Thermal resistance values for 48-ba VFBGA from 28.37, 5.79 to 31.50, 13.75 °C/W).
				Updated AC Test Loads and Waveforms (Added values for $\rm V_{HIGH}$ paramete in the table).
				Updated Data Retention Characteristics: Changed maximum value of I _{CCDR} parameter from 25 mA to 30 mA. Added t _{CEDS} and t _{DSCE} parameters and their details. Updated Note 12 (for better clarity).

Document History Page (continued)

Document Title: CY7S1061G/CY7S1061GE, 16-Mbit (1 M words x 16 bit) Static RAM w	ith Deep-Sleep Feature and Error
Correcting Code (ECC)	·

Document Number: 001-79707							
Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change			
*A (cont.)	3776318	AJU	10/30/2012	Updated AC Switching Characteristics: Removed tpower parameter and associated note "tpower gives the minimum amount of time that the power supply is at typical V _{CC} values until the first memory access" (spec captured in Note 7). Removed the note "The minimum write cycle time for Write Cycle No. 2 (WE controlled, OE LOW) is the sum of the			
				Updated Package Diagrams.			
*B	4003550	AJU	05/17/2013	No technical updates.			
*C	4116197	MEMJ	09/06/2013	Updated Document Title to "16-Mbit (1 M words × 16 bit) Static RAM with Deep-Sleep Feature and Error Correcting Code (ECC)". Updated Features: Changed I _{SB2} from 30 mA Typical to 20mA Typical. Added "Embedded Error Correcting Code (ECC) for single-bit error correction" Updated V _{DR} from 1.5 V to 1 V. Updated Functional Description: Added ECC description. Updated Logic Block Diagram - CY7S1061G: Made CE ₁ active low (Replaced CE ₁ with CE ₁). Updated Data Retention Characteristics: Changed minimum value of V _{DR} from 1.5 V to 1.0 V. Updated Data Retention Waveform: Changed V _{DR} from 1.5 V to 1.0 V. Updated AC Switching Characteristics: Changed minimum value of t _{LZOE} parameter from 1 ns to 0 ns for 10 ns speed bin. Changed minimum value of t _{LZBE} parameter from 1 ns to 0 ns for 10 ns speed bin. Updated Ordering Information (Updated part numbers). Updated in new template.			

Document History Page (continued)

orrectina (Title: CY7S1 Code (ECC) Number: 00		1061GE, 16-MI	bit (1 M words × 16 bit) Static RAM with Deep-Sleep Feature and Error
Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change
*D	4189510	MEMJ	11/12/2013	Updated Pin Configurations: Added Figure 4.
				Update DC Electrical Characteristics: Added minimum value of I _{SB2} parameter. Added Note 8 and referred the same note in minimum value of I _{SB2} parameter
				Updated Deep-Sleep Mode Characteristics: Referred Note 15 in t _{CEDS} and t _{DSCE} parameters.
				Updated Ordering Information (Updated part numbers).
*E	4272659	MEMJ	02/06/2014	Updated Deep-Sleep Mode Characteristics: Renamed "I _{DSDR} " as "I _{DS} " in parameter column.
				Updated AC Switching Characteristics: Added Note 19 and referred the same note in description of t _{LZOE} , t _{HZOE} , t _{LZDE} , t _{LZDE} , t _{LZWE} , t _{LZW}
*F	4292074	MEMJ/VINI	03/07/2014	Updated Features: Added logic block diagram for CY7S1061GE Specified I _{DS} value as 'maximum' Updated Product Portfolio Added I _{DS} typical of 8 μA. Update DC Electrical Characteristics: Added Column for Typical values in DC Electrical Characteristics Added I _{DS} typical of 8 μA Updated Note 10 to "Full device AC operation assumes a 100-μs ramp time from 0 to V _{CC} (min) and100-μs wait time after V _{CC} stabilization." Added Note 13 in Figure 6. Update AC Switching Characteristics Added t _{POWER} and associated Note 17 Added ERR timing information Updated t _{SD} from 5.5 ns to 5 ns. Added Note 23 and referred to write cycle timings Updated Switching Waveforms Changed title of Figure 8 from "Read Cycle No. 1" to "Read Cycle No. 1 of CY7S1061G" Added Figure 13 (WE controlled) Added Note 31 in Figure 11, Note 36 in Figure 12, and Note 40 in Figure 14 to indicate I/Os are in output state. Added condition to place outputs in the disable state by making both BHE and BLE HIGH in Truth Table. Added ERR output table Added Errata.
*G	4330547	AJU	04/02/2014	No content update.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive Clocks & Buffers Interface

Lighting & Power Control

Memory
PSoC
Touch Sensing
USB Controllers
Wireless/RF

cypress.com/go/automotive cypress.com/go/clocks cypress.com/go/interface cypress.com/go/powerpsoc cypress.com/go/plc cypress.com/go/memory cypress.com/go/psoc cypress.com/go/touch cypress.com/go/USB cypress.com/go/wireless

PSoC® Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Community | Forums | Blogs | Video | Training

Technical Support

cypress.com/go/support

© Cypress Semiconductor Corporation, 2012-2014. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.