

FDMQ8205

July 2016

GreenBridge[™] 2 Series of High-Efficiency Bridge Rectifiers

Features

- Low Power Loss GreenBridgeTM Replaced with Diode Bridge
- Self Driving Circuitry for MOSFETs
- Low r_{DS(on)} MOSFETs
- Maximizing Available Power and Voltage
- Eliminating Thermal Design Problems
- IEEE802.3at Compatible
 - Meet Detection and Classification Requirement
 - Work with 2 and 4-pair Architecture
 - Small Backfeed Voltage
- Compact MLP 4.5x5 Package

Applications

- Power over Ethernet (PoE) Power Device (PD)
 - IP Phones
 - Network Cameras
 - Wireless Access Points
 - Thin Clients
 - Microcell
 - Femtocell

General Description

FDMQ8205 is GreenBridge $^{TM}2$ series of quad MOSFETs for a bridge application so that the input will be insensitive to the polarity of a power source coupled to the device. Many known bridge rectifier circuits can be configured using typical diodes. The conventional diode bridge has relatively high power loss that is undesirable in many applications. Especially, Power over Ethernet (PoE) Power Device (PD) application requires high-efficiency bridges because it should be operated with the limited power delivered from Power Source Equipment (PSE) which is clasified by IEEE802.3at. FDMQ8205 is configured with low $r_{\rm DS(on)}$ dual P-ch MOSFETs and N-ch MOSFETs so that it can reduce the power loss caused by the voltage drop, compared to the conventional diode bridge. FDMQ8205 enables the application to maximize the available power and voltage and to eliminate the thermal design problems in PoE PD applications.

FDMQ8205 GreenBridgeTM2 is compatible with IEEE802.3at PoE standard by not compromising detection and classification requirement as well as small backfeed voltage.

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMQ8205	FDMQ8205	MLP4.5x5	13 "	12 mm	3000 units

Typical Application

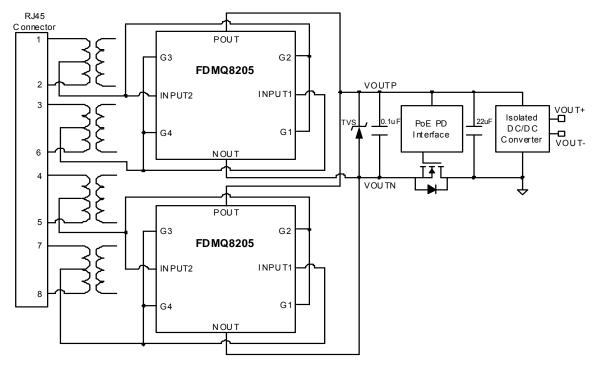


Figure 1. Typical Application of Power Device for Power over Ethernet

Block Diagram

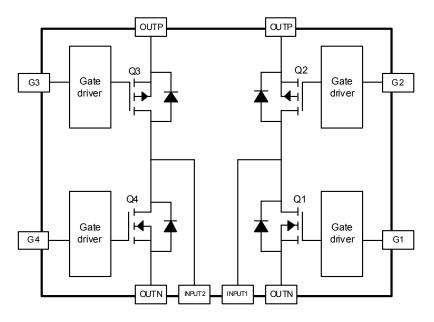
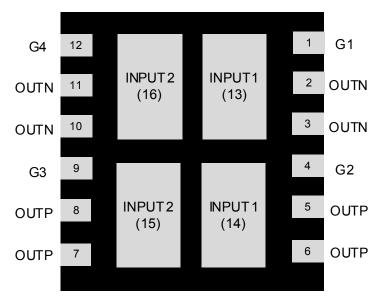



Figure 2. Block Diagram

Pin Configuration

MLP 4.5x5

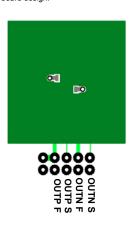
Figure 3. Pin Assignment (Bottom View)

Pin Descriptions

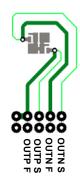
Pin Number	Name	Description	
1	G1	Gate of Q1 N-ch MOSFET	
4	G2	Gate of Q2 P-ch MOSFET	
9	G3	Gate of Q3 P-ch MOSFET	
12	G4	Gate of Q4 N-ch MOSFET	
13,14	INPUT1	Input1 of GreenBridge TM	
15,16	INPUT2	Input2 of GreenBridge TM	
2,3,11,10	OUTN	Negative Output of GreenBridge TM	
5,6,7,8	OUTP	Positive Output of GreenBridge TM	

Notes:

^{1.} Show the feature that provides orientation or pin 1 location.


Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.


				Max.	Units
INPUT1, INPUT2 to OUTN				80	V
OUTP to INF	PUT1, INPUT2			80	V
INPUT1	to INPUT2			80	V
INPUT2	to INPUT1			80	V
OUTP	to OUTN			80	V
G1, G2, G3, G4 to OUTN				70	V
OUTP to G1, G2, G3, G4				70	V
$V_{G_TRANSIENT}$	Transient Gate Voltage, Pulse W Duty Cycle < 0.0039			100	V
Continuous I _{INPLIT} (GreenBridge TM Current,	T _A = 25 °C	(Note 2a)		3.0	Α
Q1+Q3 or Q2+Q4)	T _A = 25 °C	(Note 2b)		1.7	Α
Pulsed I _{INPUT} (Q1+Q3 or Q2+Q4)	Pulse Width < 300 μs, Duty Cycle	< 2% (Note 3)		46	Α
P. (Payer Dissipation, O4+O2 or O2+O4)	T _A = 25 °C	(Note 2a)		1.2	W
P _D (Power Dissipation, Q1+Q3 or Q2+Q4)	T _A = 25 °C	(Note 2b)		0.38	W
Operating Temperature			-40	85	°C

Notes

2. $R_{\theta JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

 a. 50 °C/W when mounted on a 1 in² pad of 2 oz copper, the board designed Q1+Q3 or Q2+Q4.

b. 160 °C/W when mounted on a minimum pad of 2 oz copper, the board designed Q1+Q3 or Q2+Q4.

3. Pulse Id measured at td \leq 300 μ s, refer to SOA graph for more details.

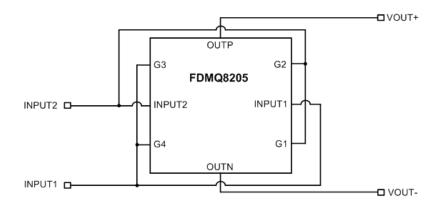
Thermal Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units
$R_{\theta JC}$	Thermal Resistance, Junction to Case		5.1		
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Note	2a)	50		°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Note	2b)	160		

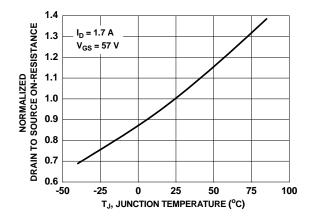
Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Conditions	Min.	Max.	Units
V _{INPUT}	Input Voltage of Bridge	INPUT1 to INPUT2 or INPUT2 to INPUT1		57	V
V _G	Gate Voltage of MOSFETs	G1, G4 to OUTN G2, G3 to OUTP		57	V
I _{INPUT}	Input Current of Bridge	Bridge Current through Q2 and Q4 or (Q3 and Q1)		1.7	Α


Electrical Characteristics

Unless otherwise noted: T_{.I} = 25 °C unless otherwise noted.


Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V _{INPUT}	Input Voltage of Bridge	At INPUT1 to INPUT2 or INPUT2 to INPUT1			57	V
V _G	Gate Voltage of MOSFETs	At G1, G4 to OUTN and G2, G3 to OUTP			57	V
	Quiescent Current	Detection Mode 1.5 V <v<sub>INPUT=V_G<10.1V (Note 4)</v<sub>			5	μА
I_{Q}		Classification Mode 10.2 V <v<sub>INPUT=V_G<23.9 V (Note 4)</v<sub>			400	μА
		Power On Mode Maximum V _{INPUT} =V _G =57 V (Note 4)			3.2	mA
V _{TURN_ON}	Turn-On Voltage of MOSFETs	Turn-On of MOSFETs while V_G Increases (Note 4)	32		36	V
I _{LEAKAGE}	Turn-Off Leakage Current	V _{OUTP} =57 V, V _{OUTN} =0 V (Note 4)			700	μА
V_{BF}	Backfeed Voltage	V_{OUTP} =57 V, V_{OUTN} =0 V, 100 kOhm between INPUT1 and INPUT2 T_{J} = -40 °C to 85 °C (Note 4)			2.7	V
		V _G =42 V, I _{INPUT} =1.5 A, T _A =25 °C		35	51	mΩ
	N-ch MOSFET	V _G =48 V, I _{INPUT} =1.5 A, T _A =25 °C		29	44	mΩ
r		V _G =57 V, I _{INPUT} =1.5 A, T _A =25 °C		26	37	mΩ
r _{DS(on)}	P-ch MOSFET	V _G = -42 V, I _{INPUT} = -1.5 A, T _A =25 °C		95	147	mΩ
		V _G = -48 V, I _{INPUT} = -1.5 A, T _A =25 °C		83	125	mΩ
		V _G = -57 V, I _{INPUT} = -1.5 A, T _A =25 °C		76	107	mΩ

Notes

4. INPUT1 is connected to G3 and G4 and also INPUT2 is connected to G1 and G2 like below.

Typical Characteristics (Q1 or Q4 N-Channel) T_J = 25°C unless otherwise noted.

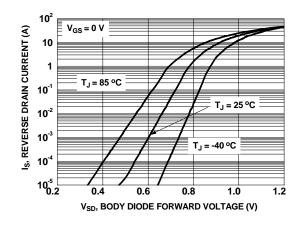


Figure 4. Normalized On Resistance vs. Junction Temperature

Figure 5. Source to Drain Diode Forward Voltage vs. Source Current

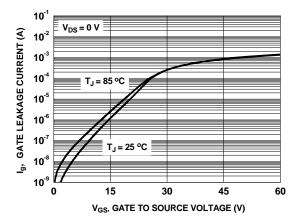
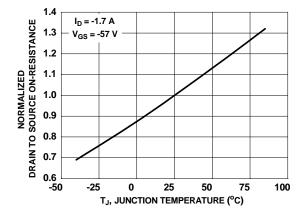



Figure 6. Gate Leakage Current vs. Gate to Source Voltage

Typical Characteristics (Q2 or Q3 P-Channel) T_J = 25 °C unless otherwise noted.

Is, REVERSE DRAIN CURRENT (A) V_{GS} = 0 V 10 T_J = 85 °C 10⁻¹ T_J = 25 °C 10⁻² 10⁻³ T_J = -40 °C 10⁻⁴ 10⁻⁵ 0.2 0.4 0.6 0.8 1.0 1.2 -V_{SD}, BODY DIODE FORWARD VOLTAGE (V)

Figure 7. Normalized On Resistance vs. Junction Temperature

Figure 8. Source to Drain Diode Forward Voltage vs. Source Current

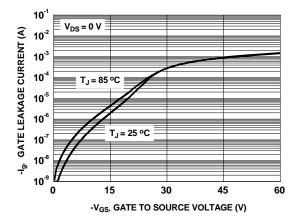



Figure 9. Gate Leakage Current vs. Gate to Source Voltage

Typical Characteristics (Q1 + Q3 or Q2 + Q4 In Serial) T_{.1} = 25°C unless otherwise noted.

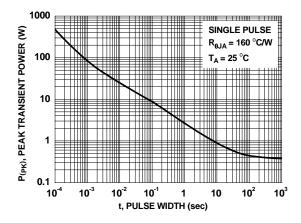


Figure 10. Forward Bias Safe Operating Area

Figure 11. Single Pulse Maximum Power Dissipation

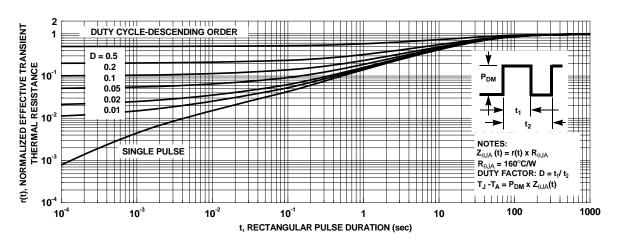


Figure 12. Junction-to-Ambient Transient Thermal Response Curve

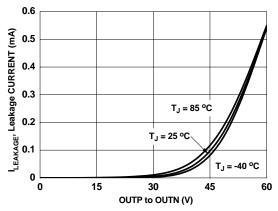
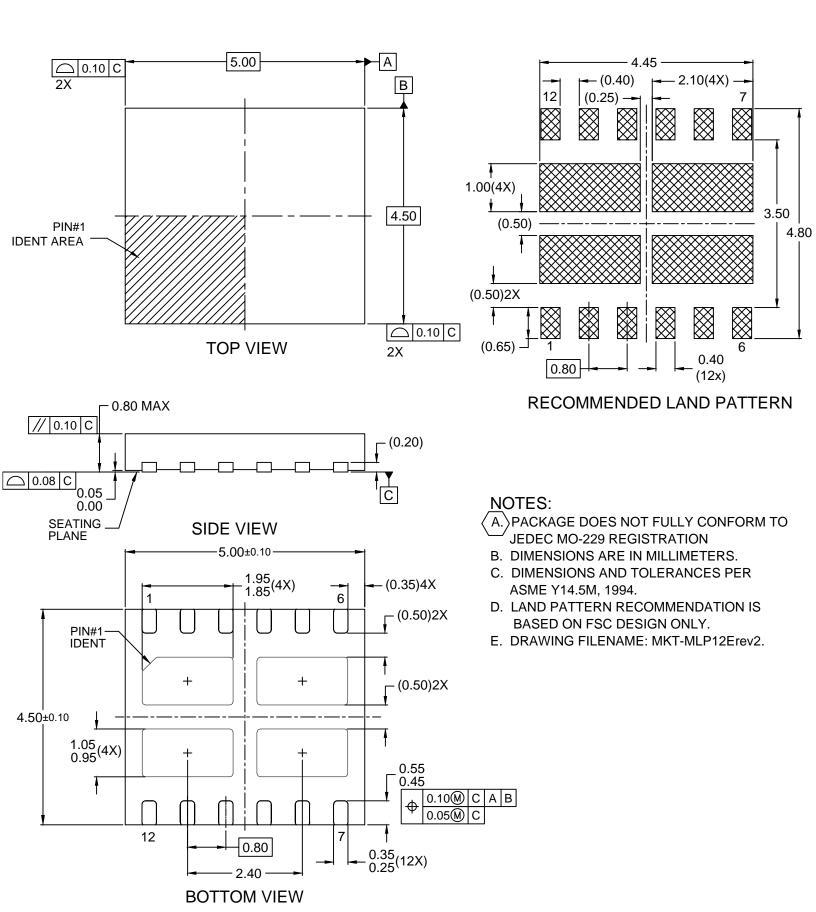



Figure 13. Leakage vs. Output Voltage Curve

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

 $\begin{array}{lll} \mathsf{AccuPower^{\mathsf{TM}}} & \mathsf{F-PFS^{\mathsf{TM}}} \\ \mathsf{AttitudeEngine^{\mathsf{TM}}} & \mathsf{FRFET}^{\texttt{®}} \end{array}$

Awinda[®] Global Power Resource SM

AX-CAP®* GreenBridge™
BitSiC™ Green FPS™
Build it Now™ Green FPS™ e-Series™

Current Transfer Logic™ Making Small Speakers Sound Louder

DEUXPEED® and Better™

Dual Cool™ MegaBuck™

EcoSPARK® MICROCOUPLER™

EfficientMax™ MicroFET™

EfficientMax™ MicroFET™
ESBC™ MicroPak™
MicroPak™
MicroPak2™
Fairchild® MillerDrive™
MotionMax™
Fairchild Semiconductor®

Farchild Semiconductor

FACT Quiet Series™
FACT®

FastvCore™
FETBench™
FPS™

MotionGrid®
MTI®
MTX®
MVN®
FETBench™
MVN®
FPS™

OptoHiT™
OPTOLOGIC®

OPTOPLANAR®

Power Supply WebDesigner™ PowerTrench®

PowerXS™

Programmable Active Droop™ OFFT®

QS™ Quiet Series™ RapidConfigure™

T TM

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM®
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SupreMOS®
SyncFET™
Sync-Lock™

SYSTEM GENERAL®'
TinyBoost®
TinyBuck®
TinyCalc™
TinyLogic®
TINYOPTO™
TinyPower™
TinyPWM™
TinyPWM™
TranSiC™
TriFault Detect™
TRUECURRENT®**
uSerDes™

SerDes"
UHC[®]
Ultra FRFET™
UniFET™
VCX™
VisualMax™
VoltagePlus™
XS™
XS™
XS™

仙童®

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT http://www.fairchildsemi.com, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Definition of Terms					
Datasheet Identification		Definition			
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.			
Preliminary First Production		Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.			
No Identification Needed Full Production		Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.			
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.			

Rev. 177