STSAFE-A100

Authentication, state-of-the-art security for peripherals and IoT devices

Features

- Authentication (of peripherals, IoT and USB Type-C devices)
- Secure channel establishment with remote host including transport layer security (TLS) handshake
- Signature verification service (secure boot and firmware upgrade)
- Usage monitoring with secure counters
- Pairing and secure channel with host application processor
- Wrapping and unwrapping of local or remote host envelopes
- On-chip key pair generation

Security features

- Latest generation of highly secure MCUs
 - CC EAL5+ AVA_VAN5 Common Criteria certified
 - Active shield
 - Monitoring of environmental parameters
 - Protection mechanism against faults
 - Unique serial number on each die
 - Protection against side-channel attacks
- Advanced asymmetric cryptography
 - Elliptic curve cryptography (ECC) with NIST or Brainpool 256-bit and 384-bit curves

- Elliptic curve digital signature algorithm (ECDSA) with SHA-256 and SHA-384 for digital signature generation and verification
- Elliptic curve Diffie-Hellman (ECDH) for key establishment
- Advanced symmetric cryptography
 - Key wrapping and unwrapping using AES-128/AES-256
 - Secure channel protocols using AES-128
- Secure operating system
 - Secure STSAFE-A100 kernel for authentication and data management
 - Protection against logical and physical attacks

Hardware features

- Highly secure MCU platform
- 6 Kbytes of configurable non-volatile memory
 - Highly reliable CMOS EEPROM technology
 - 30 years' data retention at 25 °C
 - 500 000 erase/program cycles endurance at 25 °C
 - 1.62 V to 5.5 V continuous supply voltage
- Operating temperature: -40 to 95 °C

Protocol

- I²C-bus slave interface
 - Up to 400 Kbps transmission speed (Fast mode) and true open-drain pads
 - 7-bit addressing

Packages

 ECOPACK[®]-compliant SO8N 8-lead plastic small outline and UFDFPN 8-lead ultra-thin profile fine pitch dual flat packages

1/15

For further information contact your local STMicroelectronics sales office.

Contents

1	Des	cription					
	1.1	Key function overview					
	1.2	STSAFE-A100's environment 4					
	1.3	Pin and signal description					
2	Elec	trical characteristics6					
	2.1	Power supply					
		2.1.1 Power supply specifications					
		2.1.2 Power-on and reset sequence					
	2.2	DC characteristics					
	2.3	AC characteristics					
3	Pacl	Package information 11					
	3.1	SO8N package information					
	3.2	UFDFPN8 package information 12					
4	Revi	sion history					

1 Description

The STSAFE-A100 is a highly secure solution that acts as a secure element providing authentication and data management services to a local or remote host. It consists of a full turnkey solution with a secure operating system running on the latest generation of secure microcontrollers.

The STSAFE-A100 can be integrated in IoT (Internet of things) devices, smart-home, smartcity and industrial applications, consumer electronics devices, consumables and accessories.

1.1 Key function overview

Figure 1. Authentication to a remote server (IoT device case)

The STSAFE-A100 can be mounted on:

- a device that authenticates to a remote host (IoT device case), the local host being used as a pass-through to the remote server.
- a peripheral that authenticates to a local host, for example games, mobile accessories or consumables.

The STSAFE-A100 secure element supports the following features:

Authentication

The STSAFE-A100's authentication service provides proof to a remote or local host that a certain peripheral or IoT is legitimate. An equipment manufacturer can thus ensure that only authentic peripherals like accessories or consumables can be used in conjunction with the original equipment. In the same way, a service provider can make sure that its service is only provided to the appropriate IoT device.

The authentication service utilizes the ECC cryptographic scheme with NIST or Brainpool 256-bit and 384-bit curves. It also uses the widely deployed ECDSA signature scheme with SHA-256 and SHA-384 for generating digital signatures. In addition, it is compatible with the USB Type-C authentication scheme.

DocID028943 Rev 2

• Secure-channel key establishment (TLS)

The STSAFE-A100 helps encrypt communications between a device and a remote host (such as a cloud server or gateway). The key establishment service uses the ECC cryptographic scheme with NIST, or Brainpool 256-bit and 384-bit curves. Moreover, it computes the shared secret with the widely recognized Diffie-Hellman schemes ECDH and ECDHE.

• Signature verification

The STSAFE-A100 can verify an ECDSA signature by using a public key provided by the local host. This mechanism can offload a local application processor with limited computing power and no elliptic curve cryptography accelerator. It is typically used for the secure boot or secure firmware update of the local host.

- Host authentication With its public key slot, the STSAFE-A100 can authenticate a local or remote host. Successful authentication by the STSAFE-A100 grants the local or remote host access to some authorized commands or memory partitions.
- Secure one-way counters (peripheral usage monitoring)

The manufacturer can limit the usage of disposable accessories or consumables to a given value by presetting the secure one-way counters. These counters can only be decremented.

Memory partitioning

The STSAFE-A100 comes with 6 Kbytes of non-volatile memory split into areas, whose read and write access rights can be configured to free access, local host access or remote host access.

• Pairing and secure channel with the host

The STSAFE-A100 allows a secure channel to be set up with the local host based on AES-128-bit keys for command authorization, command data encryption, response data encryption and response authentication. Typically, this secure channel prevents eavesdropping of sensitive information on the I²C line.

Wrapping & unwrapping local or remote host envelopes
 The STSAFE-A100 can be used to encrypt or decrypt data between the remote host
 and the local host. The local host may also use the STSAFE-A100's
 encryption/decryption services to store sensitive data to a local, external storage like
 Fash memory.

1.2 STSAFE-A100's environment

The STSAFE-A100 comes with a host library that can be ported to a wide range of generalpurpose microcontrollers or microprocessors. This library includes a command wrapper as well as generic use cases.

STMicroelectronics also offers key provisioning services for storage of customer credentials in a secure, certified environment.

DocID028943 Rev 2

1.3 Pin and signal description

The two figures below show the pinouts of the device delivered in the SO8N and UFDFPN8 packages. *Table 1* describes the available pins/signals.

Figure 4. UFDFPN8 pinout - Top view

Table 1. Pin and signal description

Pin/signal	Function	Description
RESET	Reset	This input signal is used to reset STSAFE-A100. The RESET pin is pull-down by default meaning that the device is reset if connected to ground or if the pin is floating. The device is active if the RESET pin is tied high.
V _{CC}	Power supply	The 1.62 to 5.5 V supply voltage is supported for powering all internal STSAFE-A100 functions.
GND	Ground supply	Ground reference pin for power and all I/O signals.
SCL	Serial clock	This input signal is used to strobe all data in and out of STSAFE-A100. The signal is an input signal only and does not support the clock stretching mode common to generic I^2C . The Clock signal is driven by the I^2C master.
SDA	Serial data	This I/O signal is used to transfer data into and out of STSAFE-A100. The signal uses an open drain output configuration. An external pull- up resistor is used to "pull up" the output.
NC	Not connected	-

2 Electrical characteristics

Device operation is guaranteed as long as the device is operated within the operating limits specified below. Operating beyond these limits may affect the long-term reliability of the device.

2.1 **Power supply**

The circuit includes a DC/DC converter that supplies the internal logic and memories with a low operating voltage. The device can operate with external voltages of 1.62 V to 5.5 V nominally, through GND and V_{CC} pins.

In order to filter spurious spikes on the supply voltage pins, decoupling capacitors (100 nF and 10 μ F) must be added to the interface device as shown on *Figure 5*. They must be wired between GND and V_{CC} pins.

Note: For each device, the 100 nF decoupling capacitor must be located as close as possible to the device (within a few millimeters). If there are multiple power supplies, a 10 μ F filtering capacitor must be located on each one.

Figure 5. Filtering capacitors on V_{CC}

Table 2. V_{CC} rising slope

Symbol	Parameter		Тур.	Max.	Unit
S _{VCC}	V_{CC} rising slope (from 10% to 90% of nominal value)	0.05	-	5	V/µs

2.1.1 Power supply specifications

Table 3 provides the detailed description of the power requirements of STSAFE-A100.

 Table 3. Power supply specifications

Name	Description	Conditions	Min.	Тур.	Max.	Units
V _{POR}	Power on reset voltage	-	1.35	1.45	1.55	V
V _{CC}	Supply voltage	V _{CC} to GND	1.62	-	5.5	V

Name	Description	Conditions	Min.	Тур.	Max.	Units	
V _{CC-HIPS}	High power supply detection	Ambient temperature (25 °C)	5.6	6.3	6.9	V	
I _{CC-PROC}	Supply current while processing a command	Ambient temperature (25 °C)	14	18	21	mA	
I _{CC-STDBY}	Supply current in Standby	IO pulled up to V_{CC} , T _A = 25 °C, 3 V to 5 V	160	245	460	μA	
I _{CC-RESET}	Supply current during reset	RESET = 0	200	450	800	μA	
I _{CC-HIBERNATE}	Supply current during Hibernate	RESET = 1 ⁽¹⁾ T _A = 25 °C	0.2	1.1	3	μA	

Table 3. Power supply specifications (continued)

 <u>RESET</u> must be tied to V_{CC} ± 200mV in case of Wake-up from Hibernate on Reset event selected. RESET, SDA and SCL must be tied to V_{CC} ± 200mV in case of Wake-up from Hibernate on Reset event or I²C start condition selected.

2.1.2 Power-on and reset sequence

Figure 6. Power-on and reset sequence

Figure 7. Warm reset sequence

Name	Description	Conditions	Min.	Тур.	Max.	Units
t _{HL}	Minimum time before de-asserting RESET after power-up	-	0	-	-	μs
S _{VCC}	V _{CC} rising slope	-	0.05	-	5	V/µs
Teet 4mA	Minimum time required to supply	From POWER OFF	-	-	500	ns
361_4111/	4 mA	From IDLE	-	-	150	
t _{WL}	Pulse Width for Reset	-	1	-	-	μs
t _R /t _F Reset	Reset Rise and Fall Time	V _{CC} > V _{POR}	-	-	1	μs
t _{I2C_} READY	Delay for STSAFE-A100 to accept I ² C commands after a reset sequence.	-	20	-	50	ms

Table 4. Power-on and reset sequence timings

2.2 DC characteristics

The following tables provide the detailed description of the DC operating conditions of STSAFE-A100 from 1.62 V to 5.5 V voltages.

Name	Description	Conditions	Min.	Max.	Units
V _{IH}	Input high voltage	T = 25 °C	$0.7 \times V_{CC}$	-	V
V _{IL}	Input low voltage	T = 25 °C	0	$0.2 \times V_{CC}$	V
	Input high current	RST	-	20	
'IH		SDA, SCL	-	1	μΑ
I _{IL}	Input low current	-	-	2	μA
V _{OL}	Output low voltage	I _{OLmax} = 1 mA	-	0.54	V
CIN1	SCL input capacitance	V _{IN} = 0 to V _{CC Max}	-	30	рF
CIN2	SDA input capacitance	V_{IN} = 0 to $V_{CC Max}$	-	30	pF

 Table 5. DC operating specifications and input parameters

Note: $V_{CC Max}$ is the maximum V_{CC} as defined in Table 3: Power supply specifications.

2.3 AC characteristics

Name	Description	Min.	Тур.	Max.	Units			
t _R , t _F Reset	Reset Rise and Fall time	-	-	1	μs			
t _{WL}	Pulse width for Reset	1	-	-	μs			

Table 6. AC characteristics

Namo	Description	Standar	rd mode	Fast	Unite		
Name	Description	Min.	Max.	Min.	Max.	Units	
f _{SCL}	SCL frequency of subdevice: processor	-	100	-	400	kHz	
t _{HD;STA}	Input low to Clock low (Start condition hold time)	4.0	-	0.6	-	μs	
t _{LOW}	Low period of SCL clock	4.7	-	1.3	-	μs	
t _{HIGH}	High period of SCL clock		-	0.6	-	μs	
t _{SU;STA}	Clock high to input transition / setup time for a (repeated) Start condition See Note		-	0.6	-	μs	
t _{HD;DAT}	Clock low to input transition	0 ⁽¹⁾	(2)	0 ⁽¹⁾	(2)	μs	
t _{SU;DAT}	Input transition to Clock transition Data setup time	250	-	100	-	ns	
t _{SU;STO}	Clock high to input high (Stop)	4.0	-	0.6	-	μs	
t _{BUF}	Input high to input low (Bus free between stop and start)	4.7	-	1.3	-	μs	
t _R	Clock and Data rise time on load capacitance of 30 pF	-	1000	20	300	ns	
t _F	Clock and Data fall time on load capacitance of 30 pF	-	300	10	300	ns	

Table 7. I²C operating conditions

1. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL.

2. The maximum t_{HD;DAT} could be 3.45 μs and 0.9 μs for Standard mode and Fast mode, but must be less than the maximum of t_{VD;DAT} or t_{VD;ACK} by a transition time. This maximum must only be met if the device does not stretch the LOW period (t_{LOW}) of the SCL signal. If the clock stretches the SCL signal, the data must be valid by the setup time before it releases the clock.

Table 8. I²C filter characteristics

Symbol	mbol Parameter		Мах	Unit
t _{SP} ⁽¹⁾	Pulse width of spikes that are suppressed by filter	0	50	ns

1. Guaranteed by design, not tested in production

Table 9. AC measurement conditions

Description	Range	Units
Input pulse voltages	0.2 × V _{CC} to 0.8 × V _{CC}	V
Input and Output timing reference voltages	0.3 × V _{CC} to 0.7 × V _{CC}	V

3 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

3.1 SO8N package information

Table 10. SO8N – 8-lead plastic small outline, 150 mils body width, package mechanical data

Symbol	millimeters			inches ⁽¹⁾			
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	
A	-	-	1.750	-	-	0.0689	
A1	0.100	-	0.250	0.0039	-	0.0098	
A2	1.250	-	-	0.0492	-	-	
b	0.280	-	0.480	0.0110	-	0.0189	
С	0.170	-	0.230	0.0067	-	0.0091	
CCC	-	-	0.100	-	-	0.0039	
D	4.800	4.900	5.000	0.1890	0.1929	0.1969	
E	5.800	6.000	6.200	0.2283	0.2362	0.2441	
E1	3.800	3.900	4.000	0.1496	0.1535	0.1575	
е	-	1.270	-	-	0.0500	-	
h	0.250	-	0.500	0.0098	-	0.0197	
k	0°	-	8°	0°	-	8°	
L	0.400	-	1.270	0.0157	-	0.0500	
L1	-	1.040	-	-	0.0409	-	

1. Values in inches are converted from mm and rounded to four decimal digits.

3.2 UFDFPN8 package information

1. Max. package warpage is 0.05 mm.

2. Exposed copper is not systematic and can appear partially or totally according to the cross section.

3. Drawing is not to scale.

Symbol	millimeters			inches ⁽¹⁾			
	Min	Тур	Мах	Min	Тур	Мах	
A	0.450	0.550	0.600	0.0177	0.0217	0.0236	
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020	
b ⁽²⁾	0.200	0.250	0.300	0.0079	0.0098	0.0118	
D	1.900	2.000	2.100	0.0748	0.0787	0.0827	
D2	1.500	1.600	1.700	0.0591	0.0630	0.0669	
E	2.900	3.000	3.100	0.1142	0.1181	0.1220	
E2	0.100	0.200	0.300	0.0039	0.0079	0.0118	
е	-	0.500	-	0.0197			
К	0.800	-	-	0.0315	-	-	
L	0.400	0.450	0.500	0.0157	0.0177	0.0197	
L1	-	-	0.150	-	-	0.0059	
L3	0.300	-	-	0.0118	-	-	
ааа	-	-	0.150	-	-	0.0059	
bbb	-	-	0.100	-	-	0.0039	
ссс	-	-	0.100	-	-	0.0039	
ddd	-	-	0.050	-	-	0.0020	
eee ⁽³⁾	-	-	0.080	-	-	0.0031	

Table 11. UFDFPN8 - 8-lead, 2 × 3 mm, 0.5 mm pitch ultra thin profile fine pitch dualflat package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. Dimension b applies to plated terminal and is measured between 0.15 and 0.30 mm from the terminal tip.

3. Applied for exposed die paddle and terminals. Exclude embedding part of exposed die paddle from measuring.

4 Revision history

Date	Revision	Changes		
03-Feb-2016	1	Initial release.		
19-Jul-2016 2		Updated Table 1: Pin and signal description. Added Section 2: Electrical characteristics. Added Section 3: Package information. Small text changes.		

Table 12. Document revision history

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

DocID028943 Rev 2