Freescale Semiconductor

Data Sheet: Advance Information

MC9S08LL16 Series Covers: MC9S08LL16 and MC9S08LL8

Features

- 8-Bit HCS08 Central Processor Unit (CPU)
 - Up to 20-MHz CPU at 3.6V to 1.8V across temperature range of -40°C to 85°C
 - HC08 instruction set with added BGND instruction
 - Support for up to 32 interrupt/reset sources
- On-Chip Memory
 - Dual Array FLASH read/program/erase over full operating voltage and temperature
 - Random-access memory (RAM)
 - Security circuitry to prevent unauthorized access to RAM and FLASH contents
- · Power-Saving Modes
 - Two low power stop modes
 - Reduced power wait mode
 - Low power run and wait modes allow peripherals to run while voltage regulator is in standby
 - Peripheral clock gating register can disable clocks to unused modules, thereby reducing currents.
 - Very low power external oscillator that can be used in stop2 or stop3 modes to provide accurate clock source to real time counter
 - 6 µs typical wake up time from stop3 mode
- · Clock Source Options
 - Oscillator (XOSC) Loop-control Pierce oscillator; Crystal or ceramic resonator range of 31.25 kHz to 38.4 kHz or 1 MHz to 16 MHz
 - Internal Clock Source (ICS) Internal clock source module containing a frequency-locked-loop (FLL) controlled by internal or external reference; precision trimming of internal reference allows 0.2% resolution and 2% deviation over temperature and voltage; supports bus frequencies from 1MHz to 10 MHz.
- · System Protection
 - Watchdog computer operating properly (COP) reset with option to run from dedicated 1-kHz internal clock source or bus clock
 - Low-Voltage Warning with interrupt
 - Low-Voltage Detection with reset or interrupt
 - Illegal Opcode Detection with reset
 - Illegal address Detection with reset
 - FLASH block protection
- Development Support
 - Single-wire background debug interface

Case 840F

48-LQFP Case 932

- Breakpoint capability to allow single breakpoint setting during in-circuit debugging (plus two more breakpoints in on-chip debug module)
- On-chip in-circuit emulator (ICE) debug module containing three comparators and nine trigger modes. Eight deep FIFO for storing change-of-flow addresses and event-only data. Debug module supports both tag and force breakpoints
- · Peripherals
 - LCD 4x28 or 8x24 LCD driver with internal charge pump and option to provide an internally regulated LCD reference that can be trimmed for contrast control.
 - **ADC** 8-channel, 12-bit resolution; 2.5 µs conversion time; automatic compare function; temperature sensor; internal bandgap reference channel; operation in stop3; fully functional from 3.6V to 1.8V
 - ACMP Analog comparator with selectable interrupt on rising, falling, or either edge of comparator output; compare option to fixed internal bandgap reference voltage; outputs can be optionally routed to TPM module; operation in stop3
 - SCI Full duplex non-return to zero (NRZ); LIN master extended break generation; LIN slave extended break detection; wake up on active edge
 - **SPI** Full-duplex or single-wire bidirectional; Double-buffered transmit and receive; Master or Slave mode; MSB-first or LSB-first shifting
 - **IIC** IIC with up to 100 kbps with maximum bus loading; Multi-master operation; Programmable slave address; Interrupt driven byte-by-byte data transfer; supports broadcast mode and 10-bit addressing
 - TPMx Two 2-channel (TPM1 and TPM2); Selectable input capture, output compare, or buffered edge- or center-aligned PWM on each channel;
 - TOD- (Time Of Day) 8-bit quarter second counter with match register; External clock source for precise time base, time-of-day, calendar or task scheduling functions; Free running on-chip low power oscillator (1 kHz) for cyclic wake-up without external components.
- Input/Output
 - 38 GPIOs, 2 output-only pins
 - 8 KBI interrupts with selectable polarity
 - Hysteresis and configurable pull up device on all input pins; Configurable slew rate and drive strength on all output pins.
- Package Options
 - 64-LQFP, 48-LQFP, 48-QFN

This document contains information on a product under development. Freescale reserves the right to change or discontinue this product without notice.

© Freescale Semiconductor, Inc., 2008. All rights reserved.

Document Number: MC9S08LL16 Rev. 2, 10/2008

Table of Contents

1	Devi	ces in the MC9S08LL16 Series
2	Pin A	Assignments
3	Elect	rical Characteristics 8
	3.1	Introduction
	3.2	Parameter Classification 8
	3.3	Absolute Maximum Ratings
	3.4	Thermal Characteristics 10
	3.5	ESD Protection and Latch-Up Immunity 11
	3.6	DC Characteristics
	3.7	Supply Current Characteristics 16
	3.8	External Oscillator (XOSCVLP) Characteristics 19
	3.9	Internal Clock Source (ICS) Characteristics 20
	3.10	AC Characteristics
		3.10.1Control Timing
		3.10.2TPM Module Timing

	3.10.3SPI Timing
	3.11 Analog Comparator (ACMP) Electricals 28
	3.12 ADC Characteristics
	3.13 LCD Specifications
	3.14 FLASH Specifications 32
	3.15 EMC Performance
	3.15.1Radiated Emissions
4	Ordering Information 34
	4.1 Device Numbering System
5	Package Information and Mechanical Drawings 35

Revision History

To provide the most up-to-date information, the revision of our documents on the World Wide Web will be the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to:

http://freescale.com/

The following revision history table summarizes changes contained in this document.

Rev	Date	Description of Changes
1	9/2008	Initial Release.
2	10/2008	Updated electrical characteristics.

Related Documentation

Find the most current versions of all documents at: http://www.freescale.com

Reference Manual (MC9S08LL16RM)

Contains extensive product information including modes of operation, memory, resets and interrupts, register definition, port pins, CPU, and all module information.

1 Devices in the MC9S08LL16 Series

Table 1 summarizes the feature set available in the MC9S08LL16 Series series of MCUs.

Feature	MC9S0	MC9S08LL8	
Package	64-pin LQFP	48-pin QFN/LQFP	48-pin QFN/LQFP
FLASH	,16 (Dual 8)	10,240 (8K and 2K arrays)	
RAM	2080	2080	2080
ACMP	yes	yes	yes
ADC	8-ch	8-ch	8-ch
IIC	yes	yes	yes
IRQ	yes	yes	yes
KBI	8	8	8
SCI	yes	yes	yes
SPI	yes	yes	yes
TPM1	2-ch	2-ch	2-ch
TPM2	2-ch	-	-
TOD	Yes	Yes	Yes
LCD	8x24 4x28	8x16 4x20	8x16 4x20
I/O pins ¹	38	31	31

Table 1. MC9S08LL16 Series Features by MCU and Package

¹I/O does not include two output-only port pins.

The block diagram in Figure 1 shows the structure of the MC9S08LL16 Series MCU.

Devices in the MC9S08LL16 Series

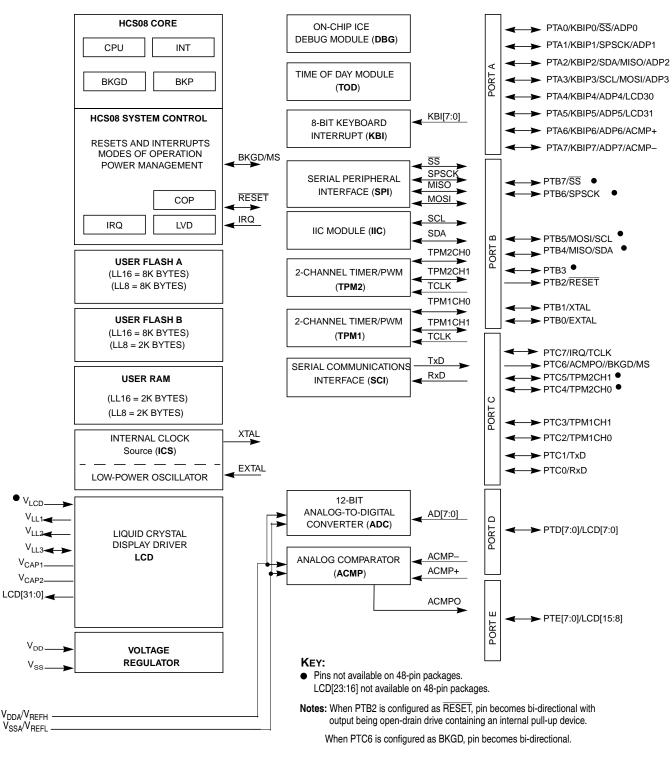
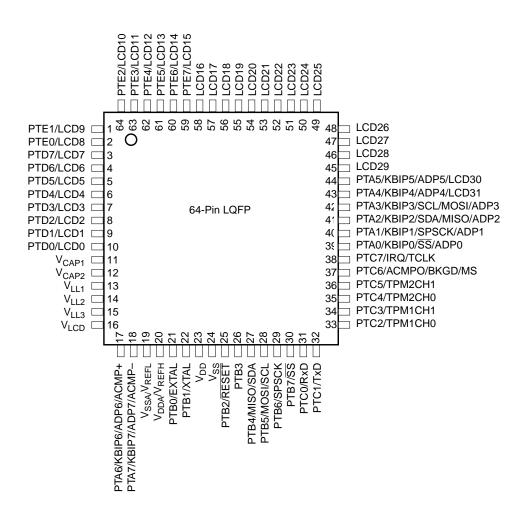
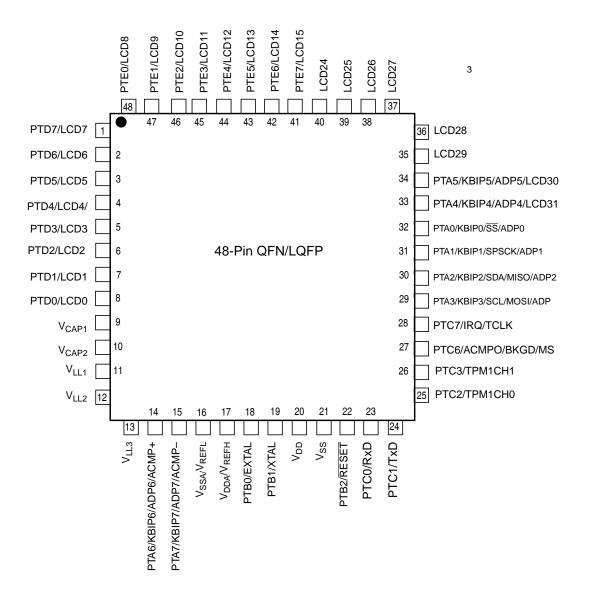



Figure 1. MC9S08LL16 Series Block Diagram


2 Pin Assignments

This section shows the pin assignments for the MC9S08LL16 Series devices.

Note: V_{REFH}/V_{REFL} are internally connected to V_{DDA}/V_{SSA}.

Figure 2. 64-pin LQFP

Note: V_{REFH}/V_{REFL} are internally connected to V_{DDA}/V_{SSA}

Figure 3. 48-pin QFN/LQFP

Pin Assignments

			<	Lowest Priority > Highest		
64	48	Port Pin	Alt 1	Alt 2	Alt3	Alt4
1	47	PTE1	LCD9			
2	48	PTE0	LCD8			
3	1	PTD7	LCD7			
4	2	PTD6	LCD6			
5	3	PTD5	LCD5			
6	4	PTD4	LCD4			
7	5	PTD3	LCD3			
8	6	PTD2	LCD2			
9	7	PTD1	LCD1			
10	8	PTD0	LCD0			
11	9		V _{cap1}			
12	10		V _{cap2}			
13	11		V _{LL1}			
14	12		V _{LL2}			
15	13		V _{LL3}			
16	—		V _{LCD}			
17	14	PTA6	KBIP6	ADP6	ACMP+	
18	15	PTA7	KBIP7	ADP7	ACMP-	
19	16				V _{SSA}	
19	16				V _{REFL}	
20	17				V _{REFH}	
20	17				V _{DDA}	
21	18	PTB0		EXTAL		
22	19	PTB1		XTAL		
23	20				V _{DD}	
24	21				V _{SS}	
25	22	PTB2	RESET			
26	_	PTB3				
27	—	PTB4	-	MISO	SDA	
28	_	PTB5	-	MOSI	SCL	
29		PTB6	-	SPSCK		
30	—	PTB7	—	SS		
31	23	PTC0		RxD		
32	24	PTC1		TxD		
33	25	PTC2		TPM1CH0		
34	26	PTC3		TPM1CH1		
35	_	PTC4		TPM2CH0		
36	—	PTC5		TPM2CH1		
37	27	PTC6	ACMPO	BKGD	MS	
38	28	PTC7		IRQ	TCLK	

Table 2. Pin Availability by Package Pin-Count

	< Lowest Priority > Highest						
64	48	Port Pin	Alt 1	Alt 2	Alt3	Alt4	
39	29	PTA0	KBIP0		SS	ADP0	
40	30	PTA1	KBIP1	—	SPSCK	ADP1	
41	31	PTA2	KBIP2	SDA	MISO	ADP2	
42	32	PTA3	KBIP3	SCL	MOSI	ADP3	
43	33	PTA4	KBIP4	ADP4	LCD31		
44	34	PTA5	KBIP5	ADP5	LCD30		
45	35		LCD29				
46	36		LCD28				
47	37		LCD27				
48	38		LCD26				
49	39		LCD25				
50	40		LCD24				
51	_		LCD23				
52			LCD22				
53	—		LCD21				
54	_		LCD20				
55			LCD19				
56			LCD18				
57			LCD17				
58			LCD16				
59	41	PTE7	LCD15				
60	42	PTE6	LCD14				
61	43	PTE5	LCD13				
62	44	PTE4	LCD12				
63	45	PTE3	LCD11				
64	46	PTE2	LCD10				

Table 2. Pin Availability by Package Pin-Count

3 Electrical Characteristics

3.1 Introduction

This section contains electrical and timing specifications for the MC9S08LL16 Series of microcontrollers available at the time of publication.

3.2 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

Table 3. Parameter Classifications

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

3.3 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 4 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pull-up resistor associated with the pin is enabled.

Rating	Symbol	Value	Unit
Supply voltage	V _{DD}	-0.3 to +3.8	V
Maximum current into V _{DD}	I _{DD}	120	mA
Digital input voltage	V _{In}	–0.3 to V _{DD} + 0.3	V
Instantaneous maximum current Single pin limit (applies to all port pins) ^{1, 2, 3}	Ι _D	± 25	mA
Storage temperature range	T _{stg}	-55 to 150	°C

Table 4. Absolut	e Maximum R	atings
------------------	-------------	--------

¹ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages, then use the larger of the two resistance values.

 $^2~$ All functional non-supply pins, except for PTB2 are internally clamped to V_{SS} and $V_{DD}.$

³ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low (which would reduce overall power consumption).

3.4 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Rating	Symbol	Value	Unit
Operating temperature range (packaged)	T _A	T _L to T _H 40 to 85	°C
Maximum junction temperature	TJ	95	°C
Thermal resistance Single-layer board			
64-pin LQFP	θ _{JA}	72	°C/W
48-pin QFN		84	
48-pin LQFP		81	
Thermal resistance Four-layer board			
64-pin LQFP	θ _{JA}	54	°C/W
48-pin QFN	1	30	
48-pin LQFP	1	57	

Table 5. Thermal Characteristics

The average chip-junction temperature (T_J) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$
 Eqn. 3-1

where:

 T_A = Ambient temperature, °C θ_{JA} = Package thermal resistance, junction-to-ambient, °C/W $P_D = P_{int} + P_{I/O}$ $P_{int} = I_{DD} \times V_{DD}$, Watts — chip internal power $P_{I/O}$ = Power dissipation on input and output pins — user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_D = K \div (T_J + 273^{\circ}C)$$
 Eqn. 3-2

Solving Equation 3-1 and Equation 3-2 for K gives:

$$K = P_D \times (T_A + 273^{\circ}C) + \theta_{JA} \times (P_D)^2$$
 Eqn. 3-3

where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 3-1 and Equation 3-2 iteratively for any value of T_A .

3.5 ESD Protection and Latch-Up Immunity

Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits, normal handling precautions should be taken to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. During the device qualification, ESD stresses were performed for the human body model (HBM), the machine model (MM) and the charge device model (CDM).

A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless instructed otherwise in the device specification.

Model	Description	Symbol	Value	Unit
Human	Series resistance	R1	1500	Ω
Body Model	Storage capacitance	С	100	pF
	Number of pulses per pin	—	3	
Charge Device	Series resistance	R1	0	Ω
Model	Storage capacitance	С	200	pF
	Number of pulses per pin	—	3	
Latch-up	Minimum input voltage limit		- 2.5	V
	Maximum input voltage limit		7.5	V

Table 6. ESD and Latch-up Test Conditions

Table 7. ESD and Latch-Up Protection Characteristics

No.	Rating ¹	Symbol	Min	Max	Unit
1	Human body model (HBM)	V _{HBM}	± 2000	_	V
2	Charge device model (CDM)	V _{CDM}	± 500	_	V
3	Latch-up current at $T_A = 85^{\circ}C$	I _{LAT}	± 100	_	mA

Parameter is achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted.

3.6 DC Characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Num	С		Characteristic	Symbol	Condition	Min	Typ ¹	Max	Unit
1		Operating V	oltage			1.8		3.6	V
2	С	Output high voltage	PTA[0:3], PTA[6:7], PTB[0:7], PTC[0:7] ² , low-drive strength	V _{OH}	1.8 V, I _{Load} = -2 mA	V _{DD} – 0.5	—	-	V
2	Ρ		PTA[0:3], PTA[6:7],		2.7 V, I _{Load} = -10 mA	V _{DD} – 0.5	_	—	
	С		PTB[0:7], PTC[0:7] ² , high-drive strength		1.8 V, I _{Load} = -3 mA	V _{DD} – 0.5	_	—	
3	С	Output high voltage	PTA[4:5], PTD[0:7], PTE[0:7], low-drive strength	V _{OH}	1.8 V, I _{Load} = -1 mA	V _{DD} – 0.8	_	_	V
5	Ρ		PTA[4:5], PTD[0:7],		2.7 V, $I_{Load} = -5 \text{ mA}$	V _{DD} – 0.8	—	—	
	С		PTE[0:7], high-drive strength		1.8 V, I _{Load} = -1 mA	V _{DD} – 0.5	_	—	
4	D	Output high current	Max total I _{OH} for all ports	I _{OHT}		—	—	100	mA
5	С	Output low voltage	PTA[0:3], PTA[6:7], PTB[0:7], PTC[0:7], low-drive strength	V _{OL}	1.8 V, I _{Load} = 2 mA	—	_	0.5	V
5	Ρ		PTA[0:3], PTA[6:7],		2.7 V, I _{Load} = 10 mA	—		0.5	
	С		PTB[0:7], PTC[0:7], high-drive strength		1.8 V, I _{Load} = 3 mA		—	0.5	
6	С	Output low voltage	PTA[4:5], PTD[0:7], PTE[0:7], low-drive strength	V _{OL}	1.8 V, I _{Load} = 1 mA	—	_	0.8	V
0	Ρ		PTA[4:5], PTD[0:7],		2.7 V, I _{Load} = 5mA	—		0.8	
	С		PTE[0:7], high-drive strength		1.8 V, I _{Load} = 1 mA	—	_	0.5	
7	D	Output low current	Max total I _{OL} for all ports	I _{OLT}		—	—	100	mA
8	Ρ	Input high	all digital inputs	V _{IH}	V _{DD} > 2.7 V	0.70 x V _{DD}	—	—	V
	С	voltage			V _{DD} > 1.8 V	0.85 x V _{DD}	_	—	
9	Ρ	Input low	all digital inputs	V _{IL}	V _{DD} > 2.7 V	—	—	0.35 x V _{DD}	
	С	voltage			V _{DD} > 1.8 V	—	—	0.30 x V _{DD}	
10	С	Input hysteresis	all digital inputs	V _{hys}		0.06 x V _{DD}	_	—	mV
11	Ρ	Input leakage current	all input only pins (Per pin)	I _{In}	V _{In} = V _{DD} or V _{SS}	—	0.1	1	μA
12	Ρ	Hi-Z (off-state) leakage current	all input/output (per pin)	I _{OZ}	$V_{In} = V_{DD} \text{ or } V_{SS}$	_	0.1	1	μΑ

Table 8. DC Characteristics

Num	С	Characteristic	Symbol	Condition	Min	Typ ¹	Max	Unit
13	Ρ	Pullup, all digital inputs, when Pulldown enabled resistors	R _{PU,} R _{PD}		17.5	_	52.5	kΩ
	D	DC injection Single pin limit	I _{IC}	$V_{IN} < V_{SS}, V_{IN} > V_{DD}$	-0.2	—	0.2	mA
14		current ^{3, 4} , 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			-5	—	5	mA
15	С	Input Capacitance, all pins	C _{In}		_	—	8	pF
16	С	RAM retention voltage	V _{RAM}		_	0.6	1.0	V
17	С	POR re-arm voltage ⁶	V _{POR}		0.9	1.4	2.0	V
18	D	POR re-arm time	t _{POR}		10	—	_	μs
19	Ρ	Low-voltage detection threshold	V _{LVD}	V _{DD} falling V _{DD} rising	1.80 1.88	1.84 1.92	1.88 1.96	V
20	Ρ	Low-voltage warning threshold	V _{LVW}	V _{DD} falling V _{DD} rising	2.08	2.14	2.2	V
21	Ρ	Low-voltage inhibit reset/recover hysteresis	V _{hys}		_	80	_	mV
22	Ρ	Bandgap Voltage Reference ⁷	V _{BG}		1.16	1.17	1.18	V

Table 8. DC Characteristics (continued)

¹ Typical values are measured at 25°C. Characterized, not tested

² All I/O pins except for LCD pins in Open Drain mode.

 3 All functional non-supply pins, except for PTB2 are internally clamped to V_{SS} and V_{DD}.

⁴ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.

⁵ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If the positive injection current ($V_{In} > V_{DD}$) is greater than I_{DD} , the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure that external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption).

⁶ POR will occur below the minimum voltage.

⁷ Factory trimmed at V_{DD} = 3.0 V, Temp = 25°C

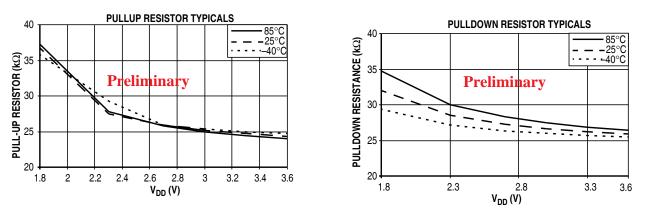


Table 9. All I/O Pullup and Pulldown Typical Resistor Values (V_{DD} = 3.0 V)

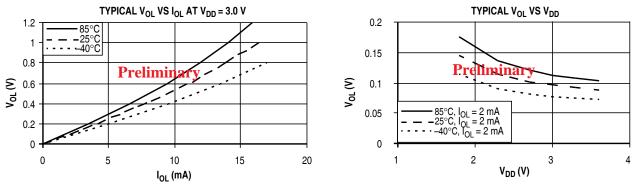


Table 10. Typical Low-Side Driver (Sink) Characteristics (Non LCD pins)— Low Drive (PTxDSn = 0)

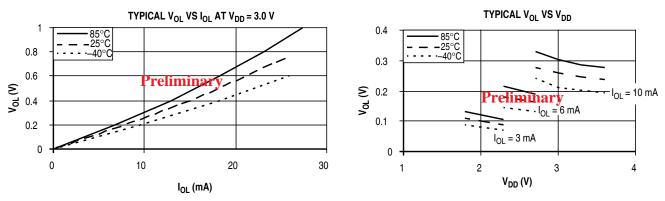


Table 11. Typical Low-Side Driver (Sink) Characteristics(Non LCD pins) — High Drive (PTxDSn = 1)

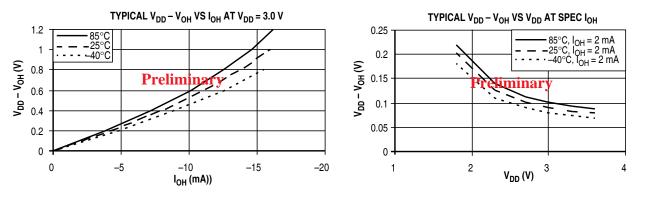


Table 12. Typical High-Side (Source) Characteristics (Non LCD pins)— Low Drive (PTxDSn = 0)

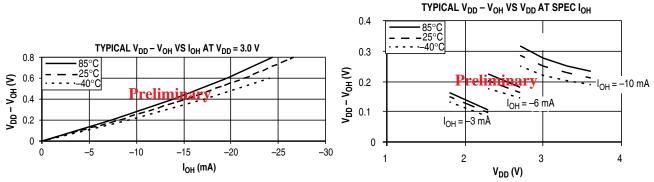


Table 13. Typical High-Side (Source) Characteristics(Non LCD pins) — High Drive (PTxDSn = 1)

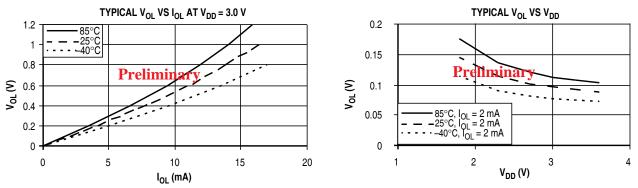


Table 14. Typical Low-Side Driver (Sink) Characteristics (LCD/GPIO pins)— Low Drive (PTxDSn = 0)

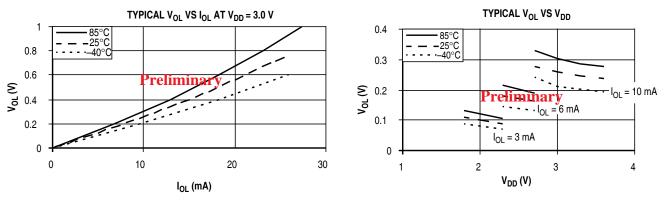
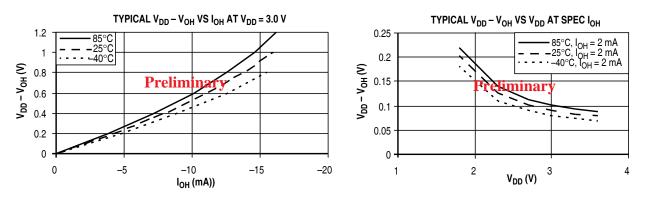



Table 15. Typical Low-Side Driver (Sink) Characteristics(LCD/GPIO pins) — High Drive (PTxDSn = 1)

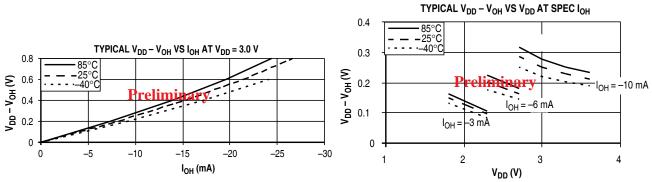


Table 17. Typical High-Side (Source) Characteristics(LCD/GPIO pins) — High Drive (PTxDSn = 1)

3.7 Supply Current Characteristics

This section includes information about power supply current in various operating modes.

Num	с	Parameter	Symbol	Bus Freq	V _{DD} (V)	Typ ¹	Max	Unit	Temp (°C)
1	Р	Run supply current	RI _{DD}	8 MHz		5.60	5.70	mA	–40 to 85°C
'	Т	FEI mode, all modules on		1 MHz	3	1	1.52		
2	Т	Run supply current	RI _{DD}	10 MHz		3.60		mA	–40 to 85°C
2	Т	FEI mode, all modules off		1 MHz	3	0.50			
3	т	Run supply current LPRS=0, all modules off	RI _{DD}	16 kHz FBILP	3	165	_	μA	–40 to 85°C
5	т			16 kHz FBELP		105			
4	т	Run supply current LPRS=1, all modules off; running	RI _{DD}	16 kHz FBILP	3	77		μA	–40 to 85°C
	т	from Flash		16 kHz FBELP		21			

 Table 18. Supply Current Characteristics

Num	с	Para	ameter	Symbol	Bus Freq	V _{DD} (V)	Typ ¹	Max	Unit	Temp (°C)
5	т		ent dules off; running	RI _{DD}	16 kHz FBILP	3	77	_	μΑ	–40 to 85°C
	т	from RAM			16 kHz FBELP		7.3	—		
6	Р	Wait mode supp		WI _{DD}	8 MHz	3	2.3	3.5	mA	–40 to 85°C
0	С	FEI mode, all mo	odules off		1 MHz		0.8	1.15		
7		Wait mode supp LPRS = 1, all mo		WI _{DD}	16 kHz FBELP	3	1.3	_	μA	–40 to 85°C
8	Р	Stop2 mode sup	ply current	S2I _{DD}	n/a	3	300	8500	nA	–40 to 85°C
0	С				n/a	2	250	7700		
9	Р	Stop3 mode sup		S3I _{DD}	n/a	3	400	12300	nA	–40 to 85°C
3	С	No clocks active			n/a	2	350	11500]	
10	с	Application Stop current ²	3 mode supply	ApS31 _{DD}	n/a	3	6.1	_	μA	25°C
11	с	Application Stop current ²	3 mode supply	ApS31 _{DD}	n/a	3	7.5	_	μA	50°C
12		Stop2 and	TOD with low power crystal oscillator (LPO)		n/a	3	100	_	nA	
13	T	Stop 3 adders:	TOD with LPO		n/a	3	350	—	nA	–40 to 85°C
14			LCD ³ VIREG enabled Adder			3	1	20	μA	
15			EREFSTEN=1		n/a		300		nA	–40 to 85°C
16	Т	Stop2 oddoro:	IREFSTEN=1		n/a	3	70	—	μΑ	
17	1	Stop3 adders:	LVD		n/a		100	—	μΑ	
18	1		ACMP		n/a	1	20	—	μΑ	

Table 18.	Supply	Current	Characteristics
-----------	--------	---------	-----------------

¹ Typical values are measured at 25°C. Characterized, not tested.

² 32 kHz crystal enabled in low power mode. TOD module enabled. V_{IREG} enabled for 3 V LCD glass 500pf 8x24 LCD glass at 32 Hz frame rate with LCD Charge pump clock set to low setting and every other segment "on."

³ Adder for enabling the internally regulated voltage with no LCD glass.

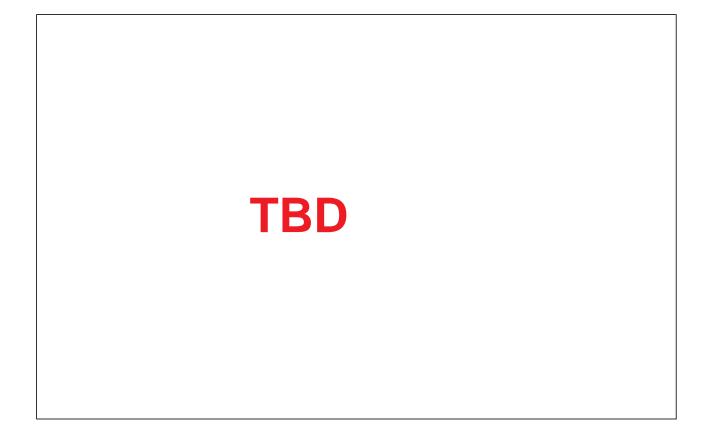
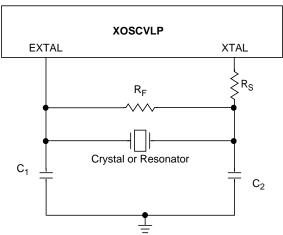


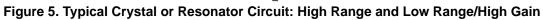
Figure 4. Typical Run I_{DD} for FBE and FEI, I_{DD} vs. V_{DD} (ACMP and ADC off, All Other Modules Enabled)

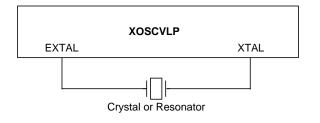
3.8 External Oscillator (XOSCVLP) Characteristics

Reference Figure 5 and Figure 6 for crystal or resonator circuits.

Num	С	Characteristic	Symbol	Min	Typ ¹	Max	Unit
1	С	Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) Low range (RANGE = 0) High range (RANGE = 1), high gain (HGO = 1) High range (RANGE = 1), low power (HGO = 0)	f _{lo} f _{hi} f _{hi}	32 1 1		38.4 16 8	kHz MHz MHz
2	D	Load capacitors Low range (RANGE=0), low power (HGO=0) Other oscillator settings	C _{1,} C ₂		See N See N		
3	D	Feedback resistor Low range, low power (RANGE=0, HGO=0) ² Low range, high gain (RANGE=0, HGO=1) High range (RANGE=1, HGO=X)	R _F		 10 1		MΩ
4	D	Series resistor — Low range, low power (RANGE = 0, HGO = 0) ² Low range, high gain (RANGE = 0, HGO = 1) High range, low power (RANGE = 1, HGO = 0) High range, high gain (RANGE = 1, HGO = 1) ≥ 8 MHz 4 MHz 1 MHz	R _S	 	 100 0 0 0 0	 10 20	kΩ
5	С	Crystal start-up time ⁴ Low range, low power Low range, high gain High range, low power High range, high gain	^t CSTL ^t CSTH	 	600 400 5 15		ms
6	D	Square wave input clock frequency (EREFS = 0, ERCLKEN = 1) FEE mode FBE or FBELP mode	f _{extal}	0.03125 0		20 20	MHz MHz


Table 19. XOSCVLP and ICS Specifications (Temperature Range = -40 to 85°C Ambient)


¹ Data in Typical column was characterized at 3.0 V, 25°C or is typical recommended value.


² Load capacitors (C_1, C_2), feedback resistor (R_F) and series resistor (R_S) are incorporated internally when RANGE=HGO=0.

³ See crystal or resonator manufacturer's recommendation.

⁴ Proper PC board layout procedures must be followed to achieve specifications.

Figure 6. Typical Crystal or Resonator Circuit: Low Range/Low Power

3.9 Internal Clock Source (ICS) Characteristics

Num	С	Characteristic	Symbol	Min	Typ ¹	Max	Unit
1	Ρ	Average internal reference frequency — factory trimmed at VDD = 3.6 V and temperature = 25 °C	f _{int_ft}		32.768	_	kHz
2	Ρ	Average internal reference frequency - trimmed	f _{int_t}	31.25	_	39.063	kHz
3	Т	Internal reference start-up time	t _{IRST}		_	6	μs
4	Ρ	DCO output frequency range - untrimmed	f _{dco_ut}	12.8	16.8	21.33	MHz
5	Ρ	DCO output frequency range - trimmed	f _{dco_t}	16	_	20	MHz
6	С	Resolution of trimmed DCO output frequency at fixed voltage and temperature (using FTRIM)	$\Delta f_{dco_res_t}$		± 0.1	± 0.2	%f _{dco}
7	С	Resolution of trimmed DCO output frequency at fixed voltage and temperature (not using FTRIM)	$\Delta f_{dco_res_t}$		± 0.2	± 0.4	%f _{dco}
8	С	Total deviation from trimmed DCO output frequency over voltage and temperature	Δf_{dco_t}		+ 0.5 -1.0	±2	%f _{dco}

Table 20. ICS Frequency	Specifications	(Temperature	Range = -40 to	85°C Ambient)
14510 201 100 1 109401109	opoonioationo	(i oinipoi atai o	1. ango – 40 te	

Num	С	Characteristic	Symbol	Min	Typ ¹	Max	Unit
9	С	Total deviation from trimmed DCO output frequency over fixed voltage and temperature range of 0° C to 70 $^{\circ}$ C	Δf_{dco_t}	_	± 0.5	± 1	%f _{dco}
10	С	FLL acquisition time ²	t _{Acquire}	_	_	1	ms
11	С	Long term jitter of DCO output clock (averaged over 2-ms interval) ³	C _{Jitter}	_	0.02	0.2	%f _{dco}

Table 20. ICS Frequency Specifications (Temperature Range = -40 to 85°C Ambient) (continued)

¹ Data in Typical column was characterized at 3.0 V, 25°C or is typical recommended value.

² This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

 3 Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{Bus}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in the crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

Figure 7. Deviation of DCO Output from Trimmed Frequency (20 MHz, 3.0 V)

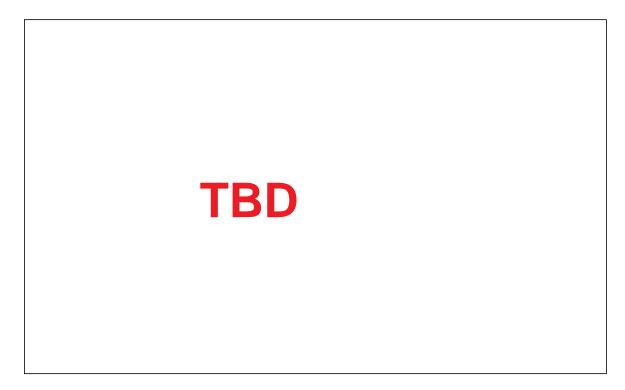


Figure 8. Deviation of DCO Output from Trimmed Frequency (20 MHz, 25°C)

3.10 AC Characteristics

This section describes timing characteristics for each peripheral system.

3.10.1 Control Timing

Num	С	Rating	Symbol	Min	Typ ¹	Max	Unit
1	D	Bus frequency (t _{cyc} = 1/f _{Bus})	f _{Bus}	dc	_	10	MHz
2	D	Internal low power oscillator period	t _{LPO}	700	_	1300	μs
3	D	External reset pulse width ²	t _{extrst}	100	_	_	ns
4	D	Reset low drive	t _{rstdrv}	34 x t _{cyc}	_	_	ns
5	D	BKGD/MS setup time after issuing background debug force reset to enter user or BDM modes	t _{MSSU}	500	_	_	ns
6	D	BKGD/MS hold time after issuing background debug force reset to enter user or BDM modes ³	t _{MSH}	100	_	_	μs
7	D	IRQ pulse width Asynchronous path ² Synchronous path ⁴	t _{ILIH} , t _{IHIL}	100 1.5 x t _{cyc}		_	ns
8	D	Keyboard interrupt pulse width Asynchronous path ² Synchronous path ⁴	t _{ILIH} , t _{IHIL}	100 1.5 x t _{cyc}	_	_	ns
9	С	Port rise and fall time — Non-LCD Pins Low output drive (PTxDS = 0) (load = 50 pF) ^{5, 6} Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1)	t _{Rise} , t _{Fall}		16 23		ns
5		Port rise and fall time — Non-LCD Pins High output drive (PTxDS = 1) (load = 50 pF) ^{5, 6} Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1)	t _{Rise} , t _{Fall}		5 9		ns

Table 21. Control Timing

¹ Typical values are based on characterization data at V_{DD} = 3.0V, 25°C unless otherwise stated.

² This is the shortest pulse that is guaranteed to be recognized as a reset pin request.

 3 To enter BDM mode following a POR, BKGD/MS should be held low during the power-up and for a hold time of t_{MSH} after V_{DD} rises above V_{LVD}.

⁴ This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized.

 $^5\,$ Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range –40°C to 85°C.

⁶ Except for LCD pins in Open Drain mode.

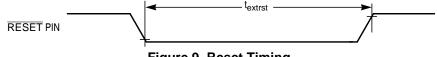


Figure 9. Reset Timing

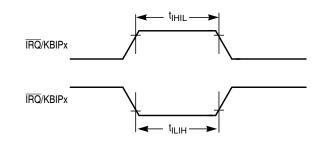


Figure 10. IRQ/KBIPx Timing

3.10.2 TPM Module Timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

No.	С	Function	Symbol	Min	Мах	Unit
1	D	External clock frequency	f _{TCLK}	0	f _{Bus} /4	Hz
2	D	External clock period	t _{TCLK}	4	—	t _{cyc}
3	D	External clock high time	t _{clkh}	1.5	—	t _{cyc}
4	D	External clock low time	t _{clkl}	1.5	_	t _{cyc}
5	D	Input capture pulse width	t _{ICPW}	1.5	—	t _{cyc}

Table 22. TP Input Timing

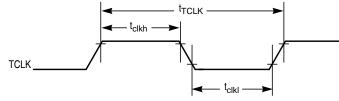


Figure 11. Timer External Clock

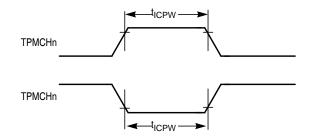


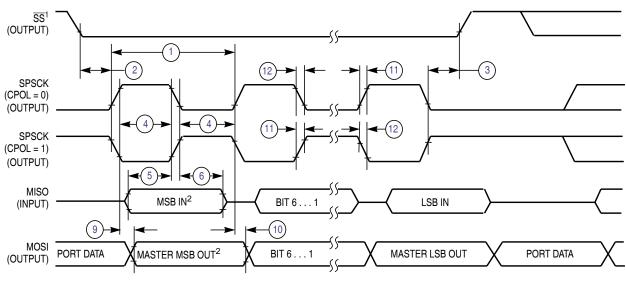
Figure 12. Timer Input Capture Pulse

3.10.3 SPI Timing

Table 23 and Figure 13 through Figure 16 describe the timing requirements for the SPI system.

No.	С	Function	Symbol	Min	Max	Unit
	D	Operating frequency Master Slave	f _{op}	f _{Bus} /2048 0	f _{Bus} /2 f _{Bus} /4	Hz
1	D	SPSCK period Master Slave	t _{SPSCK}	2 4	2048	t _{cyc} t _{cyc}
2	D	Enable lead time Master Slave	t _{Lead}	1/2 1	_	t _{SPSCK} t _{cyc}
3	D	Enable lag time Master Slave	t _{Lag}	1/2 1	_	t _{SPSCK}
4	D	Clock (SPSCK) high or low time Master Slave	t _{WSPSCK}	$t_{cyc} - 30$ $t_{cyc} - 30$	1024 t _{cyc}	ns ns
5	D	Data setup time (inputs) Master Slave	t _{SU}	15 15	_	ns ns
6	D	Data hold time (inputs) Master Slave	t _{HI}	0 25	_	ns ns
7	D	Slave access time	t _a	-	1	t _{cyc}
8	D	Slave MISO disable time	t _{dis}	_	1	t _{cyc}
9	D	Data valid (after SPSCK edge) Master Slave	t _v		25 25	ns ns
10	D	Data hold time (outputs) Master Slave	t _{HO}	0 0	_	ns ns
11	D	Rise time Input Output	t _{RI} t _{RO}	_	t _{cyc} – 25 25	ns ns
12	D	Fall time Input Output	t _{FI} t _{FO}	_	t _{cyc} – 25 25	ns ns

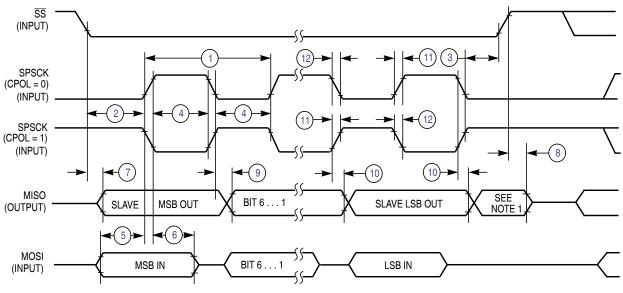
Table 23. SPI Timing



NOTES:

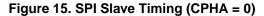
1. SS output mode (DDS7 = 1, SSOE = 1).

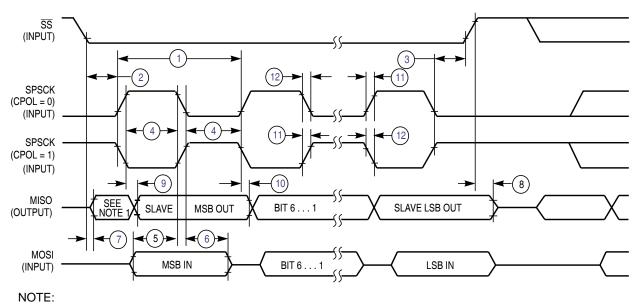
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.



NOTES:

1. \overline{SS} output mode (DDS7 = 1, SSOE = 1).


2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.



NOTE:

1. Not defined but normally MSB of character just received.

1. Not defined but normally LSB of character just received.

Figure 16. SPI Slave Timing (CPHA = 1)

3.11 Analog Comparator (ACMP) Electricals

Table 24. Analog Comparator Electrical Specifications

С	Characteristic	Symbol	Min	Typical	Мах	Unit
D	Supply voltage	V _{DD}	1.8	_	3.6	V
С	Supply current (active)	I _{DDAC}	—	20	35	μΑ
D	Analog input voltage	V _{AIN}	V _{SS} – 0.3		V _{DD}	V
Р	Analog input offset voltage	V _{AIO}		20	40	mV
С	Analog comparator hysteresis	V _H	3.0	9.0	15.0	mV
Р	Analog input leakage current	I _{ALKG}	—	—	1.0	μΑ
С	Analog comparator initialization delay	t _{AINIT}			1.0	μs

3.12 ADC Characteristics

Table 25. 12-bit ADC Operating Conditions

Characteristic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
Supply voltage	Absolute	V _{DDAD}	1.8	_	3.6	V	
	Delta to V _{DD} (V _{DD} -V _{DDAD}) ²	ΔV_{DDAD}	-100	0	+100	mV	
Ground voltage	Delta to V _{SS} (V _{SS} -V _{SSAD}) ²	ΔV_{SSAD}	-100	0	+100	mV	
Ref Voltage High		V _{REFH}	1.8	V _{DDAD}	V _{DDAD}	V	
Input Voltage		V _{ADIN}	V _{REFL}	_	V _{REFH}	V	
Input Capacitance		C _{ADIN}	_	4.5	5.5	pF	
Input Resistance		R _{ADIN}	_	5	7	kΩ	
Analog Source Resistance	12 bit mode f _{ADCK} > 4MHz f _{ADCK} < 4MHz	R _{AS}	_	_	2 5	kΩ	External to MCU
	10 bit mode f _{ADCK} > 4MHz f _{ADCK} < 4MHz		_		5 10		
	8 bit mode (all valid f _{ADCK})		_	_	10		
ADC	High Speed (ADLPC=0)	f _{ADCK}	0.4	_	8.0	MHz	
Conversion Clock Freq.	Low Power (ADLPC=1)		0.4	—	4.0		

¹ Typical values assume V_{DDAD} = 3.0V, Temp = 25°C, f_{ADCK}=1.0MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² DC potential difference.

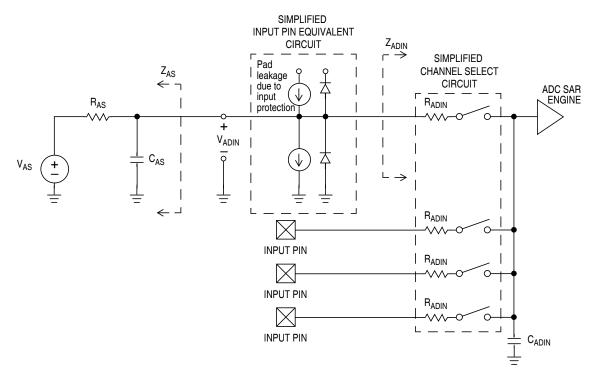


Figure 17. ADC Input Impedance Equivalency Diagram

С	Characteristic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
Т	Supply Current ADLPC=1 ADLSMP=1 ADCO=1		I _{DDAD}		120		μΑ	
Т	Supply Current ADLPC=1 ADLSMP=0 ADCO=1		I _{DDAD}	_	200		μΑ	
Т	Supply Current ADLPC=0 ADLSMP=1 ADCO=1		I _{DDAD}	_	290		μΑ	
Р	Supply Current ADLPC=0 ADLSMP=0 ADCO=1		I _{DDAD}		0.53	1	mA	
Р	ADC	High Speed (ADLPC=0)	f _{ADACK}	2	3.3	5	MHz	t _{ADACK} =
С	Asynchronous Clock Source	Low Power (ADLPC=1)		1.25	2	3.3		1/f _{ADACK}
Р	Conversion Time (Including sample time)	Short Sample (ADLSMP=0)	t _{ADC}	_	20	_	ADCK	See ADC
С		Long Sample (ADLSMP=1)		_	40	_	cycles	chapter in the LL16
Р	Sample Time	Short Sample (ADLSMP=0)	t _{ADS}	_	3.5	_	ADCK	Reference Manual for
С		Long Sample (ADLSMP=1)		_	23.5	_	cycles	conversion time variances
т	Total	12 bit mode	E _{TUE}	_	±3.0	_	LSB ²	Includes
Р	Unadjusted Error	10 bit mode			±1	±2.5		quantization
Т		8 bit mode		_	±0.5	±1.0		
Т	Differential	12 bit mode	DNL	_	±1.75	_	LSB ²	
Р	Non-Linearity	10 bit mode ³		_	±0.5	±1.0		
Т		8 bit mode ³		_	±0.3	±0.5		
т	Integral	12 bit mode	INL	_	±1.5		LSB ²	
Р	Non-Linearity	10 bit mode			±0.5	±1.0	1	
Т		8 bit mode			±0.3	±0.5		
Т	Zero-Scale	12 bit mode	E _{ZS}	_	±1.5	_	LSB ²	V _{ADIN} = V _{SSAD}
Р	Error	10 bit mode		_	±0.5	±1.5		
Т		8 bit mode		_	±0.5	±0.5		

Table 26. 12-bit ADC Characteristics ($V_{REFH} = V_{DDAD}$, $V_{REFL} = V_{SSAD}$)

				DDAD,	NEFL	SSAD/ (•
С	Characteristic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
Т	Full-Scale	12 bit mode	E _{FS}	_	±1.0		LSB ²	V _{ADIN} = V _{DDAD}
Р	Error	10 bit mode		—	±0.5	±1		
Т		8 bit mode		—	±0.5	±0.5		
D	Quantization	12 bit mode	EQ	_	-1 to 0	_	LSB ²	
	Error	10 bit mode		_	_	±0.5		
		8 bit mode		_	_	±0.5		
D	Input Leakage	12 bit mode	E _{IL}	_	±2	_	LSB ²	Pad leakage4*
	Error	10 bit mode		_	±0.2	±4		R _{AS}
		8 bit mode		_	±0.1	±1.2		
D	Temp Sensor	-40°C to 25°C	m	_	1.646	_	mV/ C	
	Slope	25°C to 85°C		_	1.769	_		
D	Temp Sensor Voltage	25°C	V _{TEMP25}	_	701.2	_	mV	

Table 26. 12-bit ADC Characteristics ($V_{REFH} = V_{DDAD}$, $V_{REFL} = V_{SSAD}$) (continued)

¹ Typical values assume V_{DDAD} = 3.0V, Temp = 25°C, f_{ADCK}=1.0MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² 1 LSB = $(V_{REFH} - V_{REFL})/2^{N}$

³ Monotonicity and No-Missing-Codes guaranteed in 10 bit and 8 bit modes

⁴ Based on input pad leakage current. Refer to pad electricals.

LCD Specifications 3.13

С	Characteristic	Symbol	Min	Тур	Max	Unit
D	LCD Supply Voltage	V _{LCD}	.9	1.5	1.8	V
D	LCD Frame Frequency	f _{Frame}	28	30	58	Hz
D	LCD Charge Pump Capacitance	C _{LCD}		100	100	nF
D	LCD Bypass Capacitance	C _{BYLCD}		100	100	nF
D	LCD Glass Capacitance	C _{glass}		2000	8000	pF
D	V _{IREG} HRefSel = 0	V _{IREG}	.89	1.00	1.15	V
	HRefSel = 1		1.49	1.67	1.85 ¹	v
D	VIREG TRIM Resolution	$\Delta_{\rm RTRIM}$	1.5			%
						V _{IREG}
D	V _{IREG} Ripple HRefSel = 0				.1	V
	HRefSel = 1				.15	V
D	V _{LCD} Buffered Adder ²	I _{Buff}		1		μΑ

Table 27. LCD Electricals, 3-V Glass

¹ V_{IREG} Max can not exceed V_{DD} -0.15 V ² VSUPPLY = 10, BYPASS = 0

3.14 **FLASH Specifications**

This section provides details about program/erase times and program-erase endurance for the FLASH memory.

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see the Memory section.

3.15 EMC Performance

С	Characteristic	Symbol	Min	Typical	Max	Unit
D	Supply voltage for program/erase -40°C to 85°C	V _{prog/erase}	1.8		3.6	V
D	Supply voltage for read operation	V _{Read}	1.8		3.6	V
D	Internal FCLK frequency ¹	f _{FCLK}	150		200	kHz
D	Internal FCLK period (1/FCLK)	t _{Fcyc}	5		6.67	μs
Р	Byte program time (random location) ²	t _{prog}	9			t _{Fcyc}
Р	Byte program time (burst mode) ²	t _{Burst}	4			t _{Fcyc}
Р	Page erase time ²	t _{Page}	4000			t _{Fcyc}
Р	Mass erase time ²	t _{Mass}		20,000		t _{Fcyc}
D	Byte program current ³	R _{IDDBP}	_	4	—	mA
D	Page erase current ³	R _{IDDPE}	_	6	_	mA
С	Program/erase endurance ⁴ T_L to $T_H = -40^{\circ}C$ to + 85°C $T = 25^{\circ}C$		10,000	 100,000		cycles
С	Data retention ⁵	t _{D_ret}	15	100	_	years

Table 28. FLASH Characteristics

The frequency of this clock is controlled by a software setting.

² These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for calculating approximate time to program and erase.

³ The program and erase currents are additional to the standard run I_{DD} . These values are measured at room temperatures with $V_{DD} = 3.0$ V, bus frequency = 4.0 MHz.

⁴ Typical endurance for FLASH was evaluated for this product family on the 9S12Dx64. For additional information on how Freescale defines typical endurance, please refer to Engineering Bulletin EB619, *Typical Endurance for Nonvolatile Memory.*

⁵ Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25°C using the Arrhenius equation. For additional information on how Freescale defines typical data retention, please refer to Engineering Bulletin EB618, *Typical Data Retention for Nonvolatile Memory.*

Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.

3.15.1 Radiated Emissions

Microcontroller radiated RF emissions are measured from 150 kHz to 1 GHz using the TEM/GTEM Cell method in accordance with the IEC 61967-2 and SAE J1752/3 standards. The measurement is performed with the microcontroller installed on a custom EMC evaluation board while running specialized EMC test software. The radiated emissions from the microcontroller are measured in a TEM cell in two package orientations (North and East).

Ordering Information

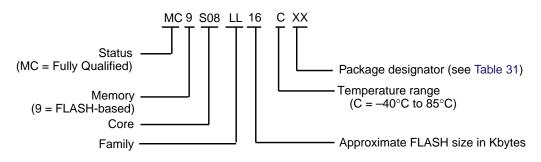
The maximum radiated RF emissions of the tested configuration in all orientations are less than or equal to the reported emissions levels.

Parameter	Symbol	Conditions	Frequency	f _{osc} /f _{Bus}	Level ¹ (Max)	Unit
	V _{RE_TEM}	$V_{DD} = 3.3 V$	0.15 – 50 MHz	32 kHz crystal 10 MHz bus	-7	dBµV
		T _A = +25 ^o C package type 64-pin LQFP	50 – 150 MHz		-9	
Radiated emissions,			150 – 500 MHz		-6	
electric field			500 – 1000 MHz		-6	
			IEC Level		Ν	—
			SAE Level		1	—

¹ Data based on qualification test results.

The susceptibility performance classification is described in Table 30.

Result		Performance Criteria
A	No failure	The MCU performs as designed during and after exposure.
В	Self-recovering failure	The MCU does not perform as designed during exposure. The MCU returns automatically to normal operation after exposure is removed.
С	Soft failure	The MCU does not perform as designed during exposure. The MCU does not return to normal operation until exposure is removed and the RESET pin is asserted.
D	Hard failure	The MCU does not perform as designed during exposure. The MCU does not return to normal operation until exposure is removed and the power to the MCU is cycled.
E	Damage	The MCU does not perform as designed during and after exposure. The MCU cannot be returned to proper operation due to physical damage or other permanent performance degradation.


Table 30. Susceptibility Performance Classification

4 Ordering Information

This section contains the ordering information and the device numbering system for the MC9S08LL16 Series.

4.1 Device Numbering System

Example of the device numbering system:

5 Package Information and Mechanical Drawings

Table 31 provides the available package types and their document numbers. The latest package outline/mechanical drawings are available on the MC9S08LL16 Series Product Summary pages at http://www.freescale.com.

To view the latest drawing, either:

- Click on the appropriate link in Table 31, or
- Open a browser to the Freescale[®] website (http://www.freescale.com), and enter the appropriate document number (from Table 31) in the "Enter Keyword" search box at the top of the page.

Pin Count	Package Type	Abbreviation	Designator	Case No.	Document No.
64	Low Quad Flat Package	LQFP	LH	840F	98ASS23234W
48	Low Quad Flat Package	LQFP	LF	932	98ASH00962A
48	Quad Flat No-Leads	QFN	GT	1314	98ARH99048A

Table 31. Package Descriptions

How to Reach Us:

Home Page: www.freescale.com

E-mail: support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH

Freescale Habletter Deutschland Gmt Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MC9S08LL16 Rev. 2 10/2008

Preliminary Subject to Change Without Notice Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2008. All rights reserved.

